Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nirwan Ansari is active.

Publication


Featured researches published by Nirwan Ansari.


international symposium on circuits and systems | 2003

Reversible data hiding

Zhicheng Ni; Yun-Qing Shi; Nirwan Ansari; Wei Su

This paper presents a novel reversible data hiding algorithm, which can recover the original image without distortion from the marked image after the hidden data have been extracted. This algorithm utilizes the zero or the minimum point of the histogram and slightly modifies the pixel values to embed data. It can embed more data as compared to most of the existing reversible data hiding algorithms. A theoretical proof and numerous experiments show that the PSNR of the marked image generated by this method is always above 48 dB, which is much higher than other reversible data hiding algorithms. The algorithm has been applied to a wide range of different images successfully. Some experimental results are presented to demonstrate the validity of the algorithm.


IEEE Transactions on Parallel and Distributed Systems | 1994

A genetic algorithm for multiprocessor scheduling

Edwin Hou; Nirwan Ansari; Hong Ren

The problem of multiprocessor scheduling can be stated as finding a schedule for a general task graph to be executed on a multiprocessor system so that the schedule length can be minimized. This scheduling problem is known to be NP-hard, and methods based on heuristic search have been proposed to obtain optimal and suboptimal solutions. Genetic algorithms have recently received much attention as a class of robust stochastic search algorithms for various optimization problems. In this paper, an efficient method based on genetic algorithms is developed to solve the multiprocessor scheduling problem. The representation of the search node is based on the order of the tasks being executed in each individual processor. The genetic operator proposed is based on the precedence relations between the tasks in the task graph. Simulation results comparing the proposed genetic algorithm, the list scheduling algorithm, and the optimal schedule using random task graphs, and a robot inverse dynamics computational task graph are presented. >


IEEE Communications Letters | 2003

IP traceback with deterministic packet marking

Andrey Belenky; Nirwan Ansari

We propose a new approach for IP traceback which is scalable and simple to implement, and introduces no bandwidth and practically no processing overhead. It is backward compatible with equipment which does not implement it. The approach is capable of tracing back attacks, which are composed of just a few packets. In addition, a service provider can implement this scheme without revealing its internal network topology.


IEEE Communications Magazine | 2005

TCP in wireless environments: problems and solutions

Ye Tian; Kai Xu; Nirwan Ansari

The Internet provides a platform for rapid and timely information exchange among a disparate array of clients and servers. TCP and IP are separately designed and closely tied protocols that define the rules of communication between end hosts, and are the most commonly used protocol suite for data transfer in the Internet. The combination of TCP/IP dominates todays communication in various networks from the wired backbone to the heterogeneous network due to its remarkable simplicity and reliability, TCP has become the de facto standard used in most applications ranging from interactive sessions such as Telnet and HTTP, to bulk data transfer like FTP. TCP was originally designed primarily for wired networks. In a wired network, random bit error rate, a characteristic usually more pronounced in the wireless network, is negligible, and congestion is the main cause of packet loss. The emerging wireless applications, especially high-speed multimedia services and the advent of wireless IP communications carried by the Internet, call for calibration and sophisticated enhancement or modifications of this protocol suite for improved performance. Based on the assumption that packet losses are signals of network congestion, the additive increase multiplicative decrease congestion control of the standard TCP protocol reaches the steady state, which reflects the protocols efficiency in terms of throughput and link utilization. However, this assumption does not hold when the end-to-end path also includes wireless links. Factors such as high BER, unstable channel characteristics, and user mobility may all contribute to packet losses. Many studies have shown that the unmodified standard TCP performs poorly in a wireless environment due to its inability to distinguish packet losses caused by network congestion from those attributed to transmission errors. In this article, following a brief introduction to TCP, we analyze the problems TCP exhibits in the wireless IP communication environment, and illustrate viable solutions by detailed examples.


IEEE Journal on Selected Areas in Communications | 2004

TCP-Jersey for wireless IP communications

Kai Xu; Ye Tian; Nirwan Ansari

Improving the performance of the transmission control protocol (TCP) in wireless Internet protocol (IP) communications has been an active research area. The performance degradation of TCP in wireless and wired-wireless hybrid networks is mainly due to its lack of the ability to differentiate the packet losses caused by network congestions from the losses caused by wireless link errors. In this paper, we propose a new TCP scheme, called TCP-Jersey, which is capable of distinguishing the wireless packet losses from the congestion packet losses, and reacting accordingly. TCP-Jersey consists of two key components, the available bandwidth estimation (ABE) algorithm and the congestion warning (CW) router configuration. ABE is a TCP sender side addition that continuously estimates the bandwidth available to the connection and guides the sender to adjust its transmission rate when the network becomes congested. CW is a configuration of network routers such that routers alert end stations by marking all packets when there is a sign of an incipient congestion. The marking of packets by the CW configured routers helps the sender of the TCP connection to effectively differentiate packet losses caused by network congestion from those caused by wireless link errors. This paper describes the design of TCP-Jersey, and presents results from experiments using the NS-2 network simulator. Results from simulations show that in a congestion free network with 1% of random wireless packet loss rate, TCP-Jersey achieves 17% and 85% improvements in goodput over TCP-Westwood and TCP-Reno, respectively; in a congested network where TCP flow competes with VoIP flows, with 1% of random wireless packet loss rate, TCP-Jersey achieves 9% and 76% improvements in goodput over TCP-Westwood and TCP-Reno, respectively. Our experiments of multiple TCP flows show that TCP-Jersey maintains the fair and friendly behavior with respect to other TCP flows.


IEEE Communications Magazine | 2005

Bandwidth allocation for multiservice access on EPONs

Yuanqiu Luo; Nirwan Ansari

Ethernet passive optical networks are a low-cost high-speed solution to the bottleneck problem of the broadband access network. A major characteristic of EPONs is the shared upstream channel among end users, mandating efficient medium access control to facilitate statistical multiplexing and provision multiple services for different types of traffic. This article addresses and provides an overview of the upstream bandwidth allocation issue for multiservice access provisioning over EPONs, and proposes an algorithm for dynamic bandwidth allocation with service differentiation. Based on the multipoint control protocol (MPCP) and bursty traffic prediction, our algorithm enhances QoS metrics such as average frame delay, average queue length, and frame loss probability over other existing protocols


IEEE Communications Magazine | 2003

On IP traceback

Andrey Belenky; Nirwan Ansari

In this article we present the current state of the art in IP traceback. The rising threat of cyber attacks, especially DDoS, makes the IP traceback problem very relevant to todays Internet security. Each approach is evaluated in terms of its pros and cons. We also relate each approach to practical deployment issues on the existing Internet infrastructure. The functionality of each approach is discussed in detail and then evaluated. We conclude with a discussion on some legal implications of IP traceback.


IEEE Communications Surveys and Tutorials | 2012

The Progressive Smart Grid System from Both Power and Communications Aspects

Chun-Hao Lo; Nirwan Ansari

The present electric power system structure has lasted for decades; it is still partially proprietary, energy-inefficient, physically and virtually (or cyber) insecure, as well as prone to power transmission congestion and consequent failures. Recent efforts in building a smart grid system have focused on addressing the problems of global warming effects, rising energy-hungry demands, and risks of peak loads. One of the major goals of the new system is to effectively regulate energy usage by utilizing the backbone of the prospectively deployed Automatic Meter Reading (AMR), Advanced Meter Infrastructure (AMI), and Demand Response (DR) programs via the advanced distribution automation and dynamic pricing models. The function of the power grid is no longer a system that only supplies energy to end users, but also allows consumers to contribute their clean energy back to the grid in the future. In the meantime, communications networks in the electric power infrastructure enact critical roles. Intelligent automation proposed in smart grid projects include the Supervisory Control And Data Acquisition/Energy Management Systems (SCADA/EMS) and Phasor Management Units (PMU) in transmission networks, as well as the AMR/AMI associated with field/neighborhood area networks (FAN/NAN) and home area networks (HAN) at the distribution and end-use levels. This article provides an overview of the essentials of the progressive smart grid paradigm and integration of different communications technologies for the legacy power system. Additionally, foreseeable issues and challenges in designing communications networks for the smart grid system are also rigorously deliberated in this paper.


Pattern Recognition | 1991

On detecting dominant points

Nirwan Ansari; Edward J. Delp

Abstract Detecting dominant points is a crucial preprocessing step for shape recognition and point-based motion estimation. Polygonal approximation has been a commonly used approach in detecting dominant points. This paper presents two alternatives which detect stable dominant points. In the first method, we find a set of positive maximum and negative minimum curvature points along the Gaussian smoothed boundary, followed by a split-and-merge polygonal approximation algorithm. The resulting break points, vertices of the approximated polygon, are the dominant points. Experimental results show that dominant points obtained by this method are less sensitive to the orientation of the boundary than other polygonal approximation algorithms in the sense that the number and the location of the dominant points along the contour remain relatively unchanged. In the second method, we smooth a boundary by a Gaussian filter using various widths until the extreme curvature points remain relatively unchanged for a range of filter widths. The resulting extreme curvature points which are stable to orientation and a reasonable range of scaling are the dominant points.


IEEE Transactions on Circuits and Systems for Video Technology | 2008

Robust Lossless Image Data Hiding Designed for Semi-Fragile Image Authentication

Zhicheng Ni; Yun Q. Shi; Nirwan Ansari; Wei Su; Qibin Sun; Xiao Lin

Recently, among various data hiding techniques, a new subset, lossless data hiding, has received increasing interest. Most of the existing lossless data hiding algorithms are, however, fragile in the sense that the hidden data cannot be extracted out correctly after compression or other incidental alteration has been applied to the stego-image. The only existing semi-fragile (referred to as robust in this paper) lossless data hiding technique, which is robust against high-quality JPEG compression, is based on modulo-256 addition to achieve losslessness. In this paper, we first point out that this technique has suffered from the annoying salt-and-pepper noise caused by using modulo-256 addition to prevent overflow/underflow. We then propose a novel robust lossless data hiding technique, which does not generate salt-and-pepper noise. By identifying a robust statistical quantity based on the patchwork theory and employing it to embed data, differentiating the bit-embedding process based on the pixel groups distribution characteristics, and using error correction codes and permutation scheme, this technique has achieved both losslessness and robustness. It has been successfully applied to many images, thus demonstrating its generality. The experimental results show that the high visual quality of stego-images, the data embedding capacity, and the robustness of the proposed lossless data hiding scheme against compression are acceptable for many applications, including semi-fragile image authentication. Specifically, it has been successfully applied to authenticate losslessly compressed JPEG2000 images, followed by possible transcoding. It is expected that this new robust lossless data hiding algorithm can be readily applied in the medical field, law enforcement, remote sensing and other areas, where the recovery of original images is desired.

Collaboration


Dive into the Nirwan Ansari's collaboration.

Top Co-Authors

Avatar

Edwin Hou

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tao Han

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Cheng

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Roberto Rojas-Cessa

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yun Q. Shi

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Nishiyama

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Sun

New Jersey Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge