Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nish Patel is active.

Publication


Featured researches published by Nish Patel.


Journal of Clinical Investigation | 2001

Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles

Peter Tong; Zayna A. Khayat; Carol Huang; Nish Patel; Atsunori Ueyama; Amira Klip

Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular compartment to the cell surface; this phenomenon is defective in type 2 diabetes. Here we examine the involvement of actin filaments in GLUT4 translocation and their possible defects in insulin resistance, using L6 myotubes expressing myc-tagged GLUT4. Insulin caused membrane ruffling, a dynamic distortion of the myotube dorsal surface. Fluorescence microscopy and immunogold staining of surface GLUT4myc coupled to backscatter electron microscopy revealed a high density of this protein in membrane ruffles. The t-SNAREs syntaxin4 and SNAP-23 were also abundant in these regions. Below the membrane, GLUT4 and the vesicular protein VAMP2, but not VAMP3, colocalized with the actin structures supporting the membrane ruffles. GLUT4myc externalization and membrane ruffles were reduced by jasplakinolide and by swinholide-A, drugs that affect actin filament stability and prevent actin branching, respectively. Insulin resistance generated by prolonged (24 hours) exposure of myotubes to high glucose and insulin diminished the acute insulin-dependent remodeling of cortical actin and GLUT4myc translocation, reminiscent of the effect of swinholide-A. We propose that GLUT4 vesicle incorporation into the plasma membrane involves insulin-dependent cortical actin remodeling and that defective actin remodeling contributes to insulin resistance.


Journal of Biological Chemistry | 2008

GLUT4 Vesicle Recruitment and Fusion Are Differentially Regulated by Rac, AS160, and Rab8A in Muscle Cells

Varinder K. Randhawa; Shuhei Ishikura; Ilana Talior-Volodarsky; Alex Won-Pang Cheng; Nish Patel; John H. Hartwig; Amira Klip

Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.


Molecular and Cellular Biology | 2003

Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in l6 skeletal muscle cells

Nish Patel; Assaf Rudich; Zayna A. Khayat; Rami R. Garg; Amira Klip

ABSTRACT Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110α catalytic subunit of PI3-K (but not p110β) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C λ. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P3]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P3 is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P3 is required for both phenomena. We propose that PI-3,4,5-P3 leads to actin remodeling, which in turn segregates p85α and p110α, thus localizing PI-3,4,5-P3 production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P3 and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.


Molecular Biology of the Cell | 2010

Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells.

Tim T. Chiu; Nish Patel; Alisa E. Shaw; James R. Bamburg; Amira Klip

Insulin increases GLUT4 at the muscle cell surface, and this process requires actin remodeling. We show that a dynamic cycle of actin polymerization and severing is induced by insulin, governed by Arp2/3 and dephosphorylation of cofilin, respectively. The cycle is self-perpetuating and is essential for GLUT4 translocation.


Journal of Cell Science | 2004

Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts.

Dóra Török; Nish Patel; Lellean JeBailey; Farah S.L. Thong; Varinder K. Randhawa; Amira Klip; Assaf Rudich

Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising the question of whether it uses similar mechanisms to insulin in mobilizing GLUT4. In L6 myoblasts stably expressing Myc-tagged GLUT4, neither stimulus affected the rate of GLUT4 endocytosis, confirming that they act primarily by enhancing exocytosis to increase GLUT4 at the cell surface. Although surface GLUT4myc in response to insulin peaked at 10 minutes and remained steady for 30 minutes, PDGF action was transient, peaking at 5 minutes and disappearing by 20 minutes. These GLUT4myc translocation time courses mirrored that of phosphorylation of Akt by the two stimuli. Interestingly, insulin and PDGF caused distinct manifestations of actin remodeling. Insulin induced discrete, long (>5 μm) dorsal actin structures at the cell periphery, whereas PDGF induced multiple short (<5 μm) dorsal structures throughout the cell, including above the nucleus. Latrunculin B, cytochalasin D and jasplakinolide, which disrupt actin dynamics, prevented insulin- and PDGF-induced actin remodeling but significantly inhibited GLUT4myc translocation only in response to insulin (75-85%, P<0.05), not to PDGF (20-30% inhibition). Moreover, transfection of tetanus toxin light chain, which cleaves the v-SNAREs VAMP2 and VAMP3, reduced insulin-induced GLUT4myc translocation by >70% but did not affect the PDGF response. These results suggest that insulin and PDGF rely differently on the actin cytoskeleton and on tetanus-toxin-sensitive VAMPs for mobilizing GLUT4.


Pflügers Archiv: European Journal of Physiology | 2006

Cellular location of insulin-triggered signals and implications for glucose uptake

Nish Patel; Carol Huang; Amira Klip

Insulin stimulation of glucose uptake into muscle and fat cells requires movement of GLUT4-containing vesicles from intracellular compartments to the plasma membrane. Accordingly, insulin-derived signals must arrive at and be recognized by the appropriate intracellular GLUT4 pools. We describe the insulin signals participating in GLUT4 translocation, and review evidence that they are recruited to intracellular membranes in conjunction with cytoskeletal elements. Such segregation may facilitate the encounter between signals and target vesicles. In most animal and cellular models of insulin resistance, insulin-stimulated GLUT4 translocation to the plasma membrane is reduced. Insulin resistance caused by oxidative stress does not affect early insulin signals, rather their intracellular localization is altered. In this and several other insulin-resistant states, insulin-induced actin remodelling is concomitantly diminished. We summarize evidence suggesting that spatial localization of signals is critical for efficient insulin action, and that the cytoskeleton may act as a scaffold to promote efficient translocation of GLUT4 to the cell surface.


Journal of Controlled Release | 2013

Targeting HER2+ breast cancer cells: Lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles

Shawn C. Owen; Nish Patel; Jennifer Logie; Guohua Pan; Helena Persson; Jason Moffat; Sachdev S. Sidhu; Molly S. Shoichet

Humanized monoclonal antibodies (mAb) against HER2 are being engineered to treat cancer. We utilized phage-display technology to generate a novel anti-HER2 mAb (named 73JIgG) that binds an epitope of HER2 distinct from that of trastuzumab. Although these mAbs bind to the same cell surface receptor, they have different cell distribution profiles. After 3h of incubation, almost 10% of the total 73JIgG reaches the lysosome compared to less than 3% of trastuzumab. Interestingly, 73JIgG disassociates from HER2 whereas trastuzumab remains bound to the receptor. Importantly, HER2 distribution is not affected by the antibody binding epitope, thus negating this mechanism as the reason for the difference in intracellular trafficking of 73JIgG versus trastuzumab. Each of trastuzumab and 73JIgG was chemically-modified with either a small molecule or polymeric nanoparticle to better understand the influence of conjugation on cellular localization. Relative to antibody alone, antibody-nanoparticle conjugates resulted in a higher concentration of antibodies in the lysosome whereas antibody-small molecule conjugates did not affect cell trafficking to the lysosome. Given the importance of lysosomal targeting, these results demonstrate the importance of understanding the influence of the antibody-conjugate on cell trafficking for ultimate optimization of treatment selection.


European Journal of Cell Biology | 2008

Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells

Chandrasagar B. Dugani; Varinder K. Randhawa; Alex Won-Pang Cheng; Nish Patel; Amira Klip

Insulin regulates glucose transporter 4 (GLUT4) availability at the surface of muscle and adipose cells. In L6 myoblasts, stably expressed GLUT4myc is detected mostly in a perinuclear region. In unstimulated cells, about half of perinuclear GLUT4myc colocalizes with the transferrin receptor (TfR). Insulin stimulation selectively decreased the perinuclear colocalization of GLUT4myc with TfR determined by 3D-reconstruction of fluorescence images. Perinuclear GLUT4myc adopted two main distributions defined morphometrically as conical and concentric. Insulin rapidly reduced the proportion of cells with conical in favor of concentric perinuclear GLUT4myc distributions in association with the gain in surface GLUT4myc. Upon removal of insulin, the GLUT4myc perinuclear distribution and surface levels reversed in parallel. In contrast, hypertonicity (which like insulin elevates surface GLUT4myc) did not elicit perinuclear GLUT4myc redistribution. Insulin also caused redistribution of perinuclear vesicle-associated membrane protein-2 (VAMP2), without alteration of perinuclear TfR and VAMP3. Inhibitory mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt substrate AS160 (AS160-4P) prevented insulin-mediated perinuclear GLUT4myc redistribution. Tetanus toxin expression did not prevent the perinuclear GLUT4myc redistribution, suggesting that redistribution is independent of GLUT4myc fusion with the plasma membrane. We propose that insulin causes selective, dynamic relocalization of perinuclear GLUT4myc and VAMP2 and perinuclear GLUT4myc redistribution is a direct target of insulin-derived signals.


Diabetes | 2002

Sustained Exposure of L6 Myotubes to High Glucose and Insulin Decreases Insulin-Stimulated GLUT4 Translocation but Upregulates GLUT4 Activity

Carol Huang; Romel Somwar; Nish Patel; Wenyan Niu; Dóra Török; Amira Klip


Journal of Biological Chemistry | 2001

Hyperosmolarity Reduces GLUT4 Endocytosis and Increases Its Exocytosis from a VAMP2-independent Pool in L6 Muscle Cells

Dailin Li; Varinder K. Randhawa; Nish Patel; Michiko Hayashi; Amira Klip

Collaboration


Dive into the Nish Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Huang

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Ye

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge