Nisha J. D’Silva
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nisha J. D’Silva.
Journal of Dental Research | 2013
Christina Springstead Scanlon; E.A. Van Tubergen; R.C. Inglehart; Nisha J. D’Silva
An understanding of the process by which tumor cells destroy the basement membrane of the surface epithelium, invade, and metastasize is essential to the development of novel treatment of head and neck squamous cell carcinoma (HNSCC). In recent years, there has been increased interest in the role of epithelial-mesenchymal transition (EMT) in invasion. EMT is a process that describes the development of motile, mesenchymal-like cells from non-motile parent epithelial cells. There are 3 known types of EMT that mediate development, wound healing, and carcinogenesis. This review summarizes studies of known EMT biomarkers in the context of HNSCC progression. The biomarkers discussed come from a wide range of proteins, including cell-surface proteins (E-cadherin, N-cadherin, and Integrins), cytoskeletal proteins (α-Smooth Muscle Actin, Vimentin, and β-catenin), extracellular matrix proteins (Collagens, Fibronectin, and Laminin), and transcription factors (SNAIL1, SNAIL2, TWIST, and LEF-1). Overall, the findings of these studies suggest that EMT mediates HNSCC progression. The mechanistic role of the EMT markers that have been associated with HNSCC should be more clearly defined if new anti-HNSCC therapies to block EMT progression are to be developed.
Journal of Dental Research | 2012
Viswanathan Palanisamy; A. Jakymiw; E.A. Van Tubergen; Nisha J. D’Silva; Keith L. Kirkwood
Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression.
Nature Communications | 2014
Rajat Banerjee; Nickole Russo; Min Liu; Venkatesha Basrur; Emily Bellile; Nallasivam Palanisamy; Christina Springstead Scanlon; Elizabeth Van Tubergen; Ronald Inglehart; Tarek Metwally; Ram Shankar Mani; Anastasia K. Yocum; Mukesh K. Nyati; Rogerio M. Castilho; Sooryanarayana Varambally; Arul M. Chinnaiyan; Nisha J. D’Silva
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Nature Communications | 2015
Christina Springstead Scanlon; Rajat Banerjee; Ronald Inglehart; Min Liu; Nickole Russo; Amirtha Hariharan; Elizabeth Van Tubergen; Sara L. Corson; Irfan A. Asangani; Charlotte M. Mistretta; Arul M. Chinnaiyan; Nisha J. D’Silva
Perineural invasion (PNI) is an indicator of poor survival in multiple cancers. Unfortunately, there is no targeted treatment for PNI since the molecular mechanisms are largely unknown. PNI is an active process, suggesting that cancer cells communicate with nerves. However, nerve-tumour crosstalk is understudied due to the lack of in vivo models to investigate the mechanisms. Here, we developed an in vivo model of PNI to characterise this interaction. We show that the neuropeptide galanin (GAL) initiates nerve-tumour crosstalk via activation of its G-protein-coupled receptor, GALR2. Our data reveal a novel mechanism by which GAL from nerves stimulates GALR2 on cancer cells to induce NFATC2-mediated transcription of cyclooxygenase-2 and GAL. Prostaglandin E2 promotes cancer invasion, and in a feedback mechanism, GAL released by cancer induces neuritogenesis, facilitating PNI. This study describes a novel in vivo model for PNI and reveals the dynamic interaction between nerve and cancer.
Oncogene | 2013
Nickole Russo; X Wang; Min Liu; Rajat Banerjee; Mitsuo Goto; Christina Springstead Scanlon; Tarek Metwally; R.C. Inglehart; A. Tsodikov; Sonia A. Duffy; E.A. Van Tubergen; Carol R. Bradford; Thomas E. Carey; G.T. Wolf; Arul M. Chinnaiyan; Nisha J. D’Silva
Despite the dismal prognosis for patients with squamous cell carcinoma of the head and neck (SCCHN), there have been no novel treatments in over 40 years. Identification of novel tumor antigens in SCCHN will facilitate the identification of potential novel treatment targets. Tumor antigens are proteins selectively expressed by tumor cells and recognized by the host immune system. Phage-displayed tumor antigens were enriched by biopanning with normal and then SCCHN-specific serum. Ninety-six phage clones were sequenced for identification, and 21 clones were validated using Luminex. One of these proteins, L23, a novel tumor antigen in SCCHN, was validated as an oncogene. L23 is upregulated in SCCHN compared with normal keratinocytes. Knockdown of L23 inhibited proliferation, invasion and cell survival. Overexpression of L23 had the reverse effect. Overexpression of L23 in non malignant cells led to transformation. Injection of SCCHN cells with knockdown of L23 in mice, induced tumors that were significantly smaller than control tumors. In conclusion, the immunomic screen yielded a panel of antigens specific to SCCHN; one of these proteins, L23, is a novel oncogene in SCCHN.
Oral Oncology | 2014
Ronald Inglehart; Christina Springstead Scanlon; Nisha J. D’Silva
Head and neck squamous cell carcinomas (HNSCC) are malignant tumors that arise from the surface epithelium of the oral cavity, oropharynx and larynx, primarily due to exposure to chemical carcinogens or the human papilloma virus. Due to their location, dental practitioners are well-positioned to detect the lesions. Deadlier than lymphoma or melanoma, HNSCC is incompletely understood. For these reasons, dental practitioners and researchers are focused on understanding HNSCC and the processes driving it. One of these critical processes is invasion, the degradation of the basement membrane by HNSCC cells with subsequent movement into the underlying connective tissue, blood vessels or nerves. Cancer cells metastasize to distant sites via the blood vessels, lymphatics and nerves. Metastasis is associated with poor survival. Since invasion is essential for development and metastasis of HNSCC, it is essential to understand the mechanism(s) driving this process. Elucidation of the mechanisms involved will facilitate the development of targeted treatment, thereby accelerating development of precision/personalized medicine to treat HNSCC. Robust in vitro and in vivo assays are required to investigate the mechanistic basis of invasion. This review will focus on in vitro and in vivo assays used to study invasion in HNSCC, with special emphasis on some of the latest assays to study HNSCC.
Experimental Biology and Medicine | 2013
Christina Springstead Scanlon; Elizabeth Van Tubergen; Leng-Chun Chen; Sakib F. Elahi; Shiuhyang Kuo; Stephen E. Feinberg; Mary Ann Mycek; Nisha J. D’Silva
Tristetraprolin (TTP) is an RNA-binding protein which downregulates multiple cytokines that mediate progression of head and neck squamous cell carcinoma (HNSCC). We previously showed that HNSCC cells with shRNA-mediated knockdown of TTP are more invasive than controls. In this study, we use control and TTP-deficient cells to present a novel subsurface non-linear optical molecular imaging method using a three-dimensional (3D) organotypic construct, and compare the live cell imaging data to histology of fixed tissue specimens. This manuscript describes how to prepare and image the novel organotypic system that closely mimics HNSCC in a clinical setting. The oral cancer equivalent (OCE) system allows HNSCC cells to stratify and invade beyond the basement membrane into underlying connective tissue prepared from decellularized human dermal tissue. The OCE model was inspired by tissue engineering strategies to prepare autologous transplants from human keratinocytes. Advantages of this method over previously used in vitro cancer models include the simulation of the basement membrane and complex connective tissue in the construct, in addition to the ability to track the 3D movement of live invading cells and quantify matrix destruction over time. The OCE model and novel live cell imaging strategy may be applied to study other types of 3D tissue constructs.
Journal of Dental Research | 2018
Peter J. Polverini; Nisha J. D’Silva; Yu Lei
Precision medicine is an approach to disease prevention and treatment that takes into account genetic variability and environmental and lifestyle influences that are unique to each patient. It facilitates stratification of patient populations that vary in their susceptibility to disease and response to therapy. Shared databases and the implementation of new technology systems designed to advance the integration of this information will enable health care providers to more accurately predict and customize prevention and treatment strategies for patients. Although precision medicine has had a limited impact in most areas of medicine, it has been shown to be an increasingly successful approach to cancer therapy. Despite early promising results targeting aberrant signaling pathways or inhibitors designed to block tumor-driven processes such as angiogenesis, limited success emphasizes the need to discover new biomarkers and treatment targets that are more reliable in predicting response to therapy and result in better health outcomes. Recent successes in the use of immunity-inducing antibodies have stimulated increased interest in the use of precision immunotherapy of head and neck squamous cell carcinoma. Using next-generation sequencing, the precise profiling of tumor-infiltrating lymphocytes has great promise to identify hypoimmunogenic cancer that would benefit from a rationally designed combinatorial approach. Continued interrogation of tumors will reveal new actionable targets with increasing therapeutic efficacy and fulfill the promise of precision therapy of head and neck cancer.
Cancer | 2011
Elizabeth Van Tubergen; Robert Vander Broek; Julia Lee; G.T. Wolf; Thomas E. Carey; Carol R. Bradford; Mark E. Prince; Keith L. Kirkwood; Nisha J. D’Silva
Tumor‐derived cytokines play a significant role in the progression of head and neck squamous cell carcinoma (HNSCC). Targeting proteins, such as tristetraprolin (TTP), that regulate multiple inflammatory cytokines may inhibit the progression of HNSCC. However, TTPs role in cancer is poorly understood. The goal of the current study was to determine whether TTP regulates inflammatory cytokines in patients with HNSCC.
Journal of Dental Research | 2018
L.B. Schmitd; Christina Springstead Scanlon; Nisha J. D’Silva
Perineural invasion (PNI) is a mechanism of tumor dissemination that can provide a challenge to tumor eradication and that is correlated with poor survival. Squamous cell carcinoma, the most common type of head and neck cancer, has a high prevalence of PNI. This review provides an overview of clinical studies on the outcomes and factors associated with PNI in head and neck cancer and on findings on cancer-nerve crosstalk.