Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nishanth E. Sunny is active.

Publication


Featured researches published by Nishanth E. Sunny.


Cell Metabolism | 2011

Excessive Hepatic Mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease

Nishanth E. Sunny; Elizabeth J. Parks; Jeffrey D. Browning; Shawn C. Burgess

Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using (2)H and (13)C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ~2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage.


Journal of Lipid Research | 2012

Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver

Santhosh Satapati; Nishanth E. Sunny; Blanka Kucejova; Xiaorong Fu; Tian Teng He; Andrés Méndez-Lucas; John M. Shelton; Jose C. Perales; Jeffrey D. Browning; Shawn C. Burgess

The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo 2H/13C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.


Drugs | 2013

Nonalcoholic Fatty Liver Disease: Current Issues and Novel Treatment Approaches

Romina Lomonaco; Nishanth E. Sunny; Fernando Bril; Kenneth Cusi

Nonalcoholic fatty liver disease (NAFLD) is considered the most common liver disorder in the Western world. It is commonly associated with insulin resistance, obesity, dyslipidaemia, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Nonalcoholic steatohepatitis (NASH) is characterized by steatosis with necroinflammation and eventual fibrosis, which can lead to end-stage liver disease and hepatocellular carcinoma. Its pathogenesis is complex, and involves a state of ‘lipotoxicity’ in which insulin resistance, with increased free fatty acid release from adipose tissue to the liver, play a key role in the onset of a ‘lipotoxic liver disease’ and its progression to NASH. The diagnosis of NASH is challenging, as most affected patients are symptom free and the role of routine screening is not clearly established. A complete medical history is important to rule out other causes of fatty liver disease (alcohol abuse, medications, other). Plasma aminotransferase levels and liver ultrasound are helpful in the diagnosis of NAFLD/NASH, but a liver biopsy is often required for a definitive diagnosis. However, there is an active search for plasma biomarkers and imaging techniques that may non-invasively aid in the diagnosis. The treatment of NASH requires a multifaceted approach. The goal is to reverse obesity-associated lipotoxicity and insulin resistance via lifestyle intervention. Although there is no pharmacological agent approved for the treatment of NAFLD, vitamin E (in patients without T2DM) and the thiazolidinedione pioglitazone (in patients with and without T2DM) have shown the most consistent results in randomized controlled trials. This review concentrates on our current understanding of the disease, with a focus on the existing therapeutic approaches and potential future pharmacological developments for NAFLD and NASH.


Journal of Clinical Investigation | 2015

Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

Santhosh Satapati; Blanka Kucejova; Joao Duarte; Justin A. Fletcher; Lacy Reynolds; Nishanth E. Sunny; Tianteng He; L. Arya Nair; Kenneth A. Livingston; Xiaorong Fu; Matthew E. Merritt; A. Dean Sherry; Craig R. Malloy; John M. Shelton; Jennifer E Lambert; Elizabeth J. Parks; Ian R. Corbin; Mark A. Magnuson; Jeffrey D. Browning; Shawn C. Burgess

Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.


Trends in Endocrinology and Metabolism | 2017

Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies

Nishanth E. Sunny; Fernando Bril; Kenneth Cusi

Nonalcoholic fatty liver disease (NAFLD) is prevalent in patients with obesity or type 2 diabetes. Nonalcoholic steatohepatitis (NASH), encompassing steatosis with inflammation, hepatocyte injury, and fibrosis, predisposes to cirrhosis, hepatocellular carcinoma, and even cardiovascular disease. In rodent models and humans with NAFLD/NASH, maladaptation of mitochondrial oxidative flux is a central feature of simple steatosis to NASH transition. Induction of hepatic tricarboxylic acid cycle closely mirrors the severity of oxidative stress and inflammation in NASH. Reactive oxygen species generation and inflammation are driven by upregulated, but inefficient oxidative flux and accumulating lipotoxic intermediates. Successful therapies for NASH (weight loss alone or with incretin therapy, or pioglitazone) likely attenuate mitochondrial oxidative flux and halt hepatocellular injury. Agents targeting mitochondrial dysfunction may provide a novel treatment strategy for NAFLD.


American Journal of Physiology-endocrinology and Metabolism | 2010

Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet

Nishanth E. Sunny; Santhosh Satapati; Xiaorong Fu; Tianteng He; Roshi Mehdibeigi; Chandra Spring-Robinson; Joao Duarte; Matthew J. Potthoff; Jeffrey D. Browning; Shawn C. Burgess

Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.


Oncogene | 2011

Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death

Blanka Kucejova; Nishanth E. Sunny; Andrew D. Nguyen; Rami R. Hallac; Xiaorong Fu; Samuel Peña-Llopis; Ralph P. Mason; Ralph J. DeBerardinis; Xian Jin Xie; Russell A. DeBose-Boyd; Vikram D. Kodibagkar; Shawn C. Burgess; James Brugarolas

As the ultimate electron acceptor in oxidative phosphorylation, oxygen plays a critical role in metabolism. When oxygen levels drop, heterodimeric hypoxia-inducible factor (Hif) transcription factors become active and facilitate adaptation to hypoxia. Hif regulation by oxygen requires the protein von Hippel-Lindau (pVhl) and pVhl disruption results in constitutive Hif activation. The liver is a critical organ for metabolic homeostasis, and Vhl inactivation in hepatocytes results in a Hif-dependent shortening in life span. While albumin-Cre;VhlF/F mice develop hepatic steatosis and impaired fatty acid oxidation, the variable penetrance and unpredictable life expectancy has made the cause of death elusive. Using a system in which Vhl is acutely disrupted and a combination of ex vivo liver perfusion studies and in vivo oxygen measurements, we demonstrate that Vhl is essential for mitochondrial respiration in vivo. Adenovirus-Cre mediated acute Vhl disruption in the liver caused death within days. Deprived of pVhl, livers accumulated tryglicerides and circulating ketone and glucose levels dropped. The phenotype was reminiscent of inborn defects in fatty acid oxidation and of fasted PPARα-deficient mice and while death was unaffected by pharmacologic PPARα activation, it was delayed by glucose administration. Ex vivo liver perfusion analyses and acylcarnitine profiles showed mitochondrial impairment and a profound inhibition of liver ketone and glucose production. By contrast, other mitochondrial functions, such as ureagenesis, were unaffected. Oxygen consumption studies revealed a marked suppression of mitochondrial respiration, which, as determined by magnetic resonance oximetry in live mice, was accompanied by a corresponding increase in liver pO2. Importantly, simultaneous inactivation of Hif-1β suppressed liver steatosis and rescued the mice from death. These data demonstrate that constitutive Hif activation in mice is sufficient to suppress mitochondrial respiration in vivo and that no other pathway exists in the liver that can allow oxygen utilization when Hif is active precluding thereby metabolic collapse.


American Journal of Physiology-endocrinology and Metabolism | 2015

Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

Nishanth E. Sunny; Srilaxmi Kalavalapalli; Fernando Bril; Timothy J. Garrett; Manisha Nautiyal; Justin T. Mathew; Caroline M. Williams; Kenneth Cusi

Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.


Journal of Hepatology | 2013

PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis

Andrés Méndez-Lucas; Joao Duarte; Nishanth E. Sunny; Santhosh Satapati; Tianteng He; Xiaorong Fu; Jordi Bermúdez; Shawn C. Burgess; Jose C. Perales

BACKGROUND & AIMS Hepatic gluconeogenesis helps maintain systemic energy homeostasis by compensating for discontinuities in nutrient supply. Liver-specific deletion of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) abolishes gluconeogenesis from mitochondrial substrates, deregulates lipid metabolism and affects TCA cycle. While the mouse liver almost exclusively expresses PEPCK-C, humans equally present a mitochondrial isozyme (PEPCK-M). Despite clear relevance to human physiology, the role of PEPCK-M and its gluconeogenic potential remain unknown. Here, we test the significance of PEPCK-M in gluconeogenesis and TCA cycle function in liver-specific PEPCK-C knockout and WT mice. METHODS The effects of the overexpression of PEPCK-M were examined by a combination of tracer studies and molecular biology techniques. Partial PEPCK-C re-expression was used as a positive control. Metabolic fluxes were evaluated in isolated livers by NMR using (2)H and (13)C tracers. Gluconeogenic potential, together with metabolic profiling, was investigated in vivo and in primary hepatocytes. RESULTS PEPCK-M expression partially rescued defects in lipid metabolism, gluconeogenesis and TCA cycle function impaired by PEPCK-C deletion, while ∼10% re-expression of PEPCK-C normalized most parameters. When PEPCK-M was expressed in the presence of PEPCK-C, the mitochondrial isozyme amplified total gluconeogenic capacity, suggesting autonomous regulation of oxaloacetate to phosphoenolpyruvate fluxes by the individual isoforms. CONCLUSIONS We conclude that PEPCK-M has gluconeogenic potential per se, and cooperates with PEPCK-C to adjust gluconeogenic/TCA flux to changes in substrate or energy availability, hinting at a role in the regulation of glucose and lipid metabolism in the human liver.


Journal of Animal Science | 2010

Gluconeogenesis differs in developing chick embryos derived from small compared with typical size broiler breeder eggs.

Nishanth E. Sunny; B.J. Bequette

We hypothesized that, as the supply of preformed glucose diminishes during development, the embryo would transition to a greater rate of gluconeogenesis (GNG) and that GNG would be greater in embryos from small vs. typical size eggs. Gluconeogenesis by embryos from small (51.1 +/- 3.46 g) and typical size (65 +/- 4.35 g) broiler breeder eggs was measured by dosing [(13)C(6)]glucose (15 mgxegg(-1)) into the chorio-allantoic fluid for 3 consecutive days to achieve isotopic steady-state before blood collection on embryonic day (e) 12, e14, e16, and e18 (4 to 5 eggsxsize(-1)xd(-1)). The (13)C-Mass isotopomer enrichment of blood glucose was determined by gas chromatography-mass spectrometry. On e14, e16, and e18, but not on e12, embryos from small eggs weighed less (P < 0.05) than typical size eggs. For both sizes of eggs, blood glucose concentration, glucose entry rate (g.d(-1)), and Cori cycling and glucose (13)C-recycling (% of entry rate) increased (P < 0.05) with development. On e12 and e14, rates of glucose entry and Cori cycle flux were greater (P < 0.05) for embryos from small eggs. When standardized to BW (g.100 g of BW(-1)xd(-1)), glucose entry and Cori and non-Cori cycle fluxes were greater for embryos from small eggs. From e12 through e18, blood concentrations of gluconeogenic AA (threonine, glutamine, arginine, proline, isoleucine, and valine) were 25 to 48% less (P < 0.01) in embryos from small eggs. In conclusion, embryos from small eggs exhibit greater rates of GNG earlier in development compared with typical size eggs and, perhaps as a consequence, their reduced embryonic growth may result from diverting greater supplies of AA toward GNG.

Collaboration


Dive into the Nishanth E. Sunny's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn C. Burgess

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santhosh Satapati

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaorong Fu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tianteng He

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey D. Browning

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge