Nishanth V. Menon
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nishanth V. Menon.
ACS Applied Materials & Interfaces | 2013
Shreyas Kuddannaya; Yon Jin Chuah; Min Hui Adeline Lee; Nishanth V. Menon; Yuejun Kang; Yilei Zhang
The surface chemistry of materials has an interactive influence on cell behavior. The optimal adhesion of mammalian cells is critical in determining the cell viability and proliferation on substrate surfaces. Because of the inherent high hydrophobicity of a poly(dimethylsiloxane) (PDMS) surface, cell culture on these surfaces is unfavorable, causing cells to eventually dislodge from the surface. Although physically adsorbed matrix proteins can promote initial cell adhesion, this effect is usually short-lived. Here, (3-aminopropyl)triethoxy silane (APTES) and cross-linker glutaraldehyde (GA) chemistry was employed to immobilize either fibronectin (FN) or collagen type 1 (C1) on PDMS. The efficiency of these surfaces to support the adhesion and viability of mesenchymal stem cells (MSCs) was analyzed. The hydrophobicity of the native PDMS decreased significantly with the mentioned surface functionalization. The adhesion of MSCs was mostly favorable on chemically modified PDMS surfaces with APTES + GA + protein. Additionally, the spreading area of MSCs was significantly higher on APTES + GA + C1 surfaces than on other unmodified/modified PDMS surfaces with C1 adsorption. However, there were no significant differences in the MSC spreading area on the unmodified/modified PDMS surfaces with FN adsorption. Furthermore, there was a significant increase in cell proliferation on the PDMS surface with APTES + GA + protein functionalization as compared to the PDMS surface with protein adsorption only. Therefore, the covalent surface chemical modification of PDMS with APTES + GA + protein could offer a more biocompatible platform for the enhanced adhesion and proliferation of MSCs. Similar strategies can be applied for other substrates and cell lines by appropriate combinations of self-assembly monolayers (SAMs) and extracellular matrix proteins.
ACS Nano | 2015
Sivaramapanicker Sreejith; James Joseph; Manjing Lin; Nishanth V. Menon; Parijat Borah; Hao Jun Ng; Yun Xian Loong; Yuejun Kang; Sidney Yu; Yanli Zhao
Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.
Scientific Reports | 2016
Yon Jin Chuah; Yi Ting Koh; Kaiyang Lim; Nishanth V. Menon; Yingnan Wu; Yuejun Kang
Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies.
Acta Biomaterialia | 2015
Yon Jin Chuah; Ying Zhang; Yingnan Wu; Nishanth V. Menon; Ghim Hian Goh; Ann Charlene Lee; Vincent Chan; Yilei Zhang; Yuejun Kang
Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration.
ACS Applied Materials & Interfaces | 2015
Nishanth V. Menon; Yon Jin Chuah; Samantha Phey; Ying Zhang; Yingnan Wu; Vincent Chan; Yuejun Kang
As an alternative to complex and costly in vivo models, microfluidic in vitro models are being widely used to study various physiological phenomena. It is of particular interest to study cell migration in a controlled microenvironment because of its vital role in a large number of physiological processes, such as wound healing, disease progression, and tissue regeneration. Cell migration has been shown to be affected by variations in the biochemical and physical properties of the extracellular matrix (ECM). To study the combinatorial impact of the ECM physical properties on cell migration, we have developed a microfluidic assay to induce migration of human bone marrow derived mesenchymal stem cells (hBMSCs) on polydimethylsiloxane (PDMS) substrates with varying combinatorial properties (hydrophobicity, stiffness, and roughness). The results show that although the initial cell adhesion and viability appear similar on all PDMS samples, the cell spreading and migration are enhanced on PDMS samples exhibiting intermediate levels of hydrophobicity, stiffness, and roughness. This study suggests that there is a particular range of substrate properties for optimal cell spreading and migration. The influence of substrate properties on hBMSC migration can help understand the physical cues that affect cell migration, which may facilitate the development of optimized engineered scaffolds with desired properties for tissue regeneration applications.
Langmuir | 2014
Peng Xue; Jingnan Bao; Yon Jin Chuah; Nishanth V. Menon; Yilei Zhang; Yuejun Kang
Cell growing behavior is significantly dependent on the surface chemistry of materials. SU-8 as an epoxy-based negative photoresist is commonly used for fabricating patterned layers in lab-on-a-chip devices. As a hydrophobic material, SU-8 substrate is not favorable for cell culture, and cell attachment on native SU-8 is limited attributed to poor surface biocompatibility. Although physical adsorption of proteins could enhance the cell adhesion, the effect is not durable. In this work, SU-8 surface chemistry is modified by immobilizing fibronectin (FN) and collagen type I (COL I) covalently using (3-aminopropyl)triethoxysilane (APTES) and cross-linker glutaraldehyde (GA) to increase surface biofunctionality. The effectiveness of this surface treatment to improve the adhesion and viability of mesenchymal stem cells (MSCs) is investigated. It is found that the wettability of SU-8 surface can be significantly increased by this chemical modification. In addition, the spreading area of MSCs increases on the SU-8 surfaces with covalently conjugated matrix proteins, as compared to other unmodified SU-8 surface or those coated with proteins simply by physical adsorption. Furthermore, cell proliferation is dramatically enhanced on the SU-8 surfaces modified under the proposed scheme. Therefore, SU-8 surface modification with covalently bound matrix proteins assisted by APTES+GA provides a highly biocompatible interface for the enhanced adhesion, spreading, and proliferation of MSCs.
Biomicrofluidics | 2014
Nishanth V. Menon; Yon Jin Chuah; Bin Cao; Mayasari Lim; Yuejun Kang
The living cells are arranged in a complex natural environment wherein they interact with extracellular matrix and other neighboring cells. Cell-cell interactions, especially those between distinct phenotypes, have attracted particular interest due to the significant physiological relevance they can reveal for both fundamental and applied biomedical research. To study cell-cell interactions, it is necessary to develop co-culture systems, where different cell types can be cultured within the same confined space. Although the current advancement in lab-on-a-chip technology has allowed the creation of in vitro models to mimic the complexity of in vivo environment, it is still rather challenging to create such co-culture systems for easy control of different colonies of cells. In this paper, we have demonstrated a straightforward method for the development of an on-chip co-culture system. It involves a series of steps to selectively change the surface property for discriminative cell seeding and to induce cellular interaction in a co-culture region. Bone marrow stromal cells (HS5) and a liver tumor cell line (HuH7) have been used to demonstrate this co-culture model. The cell migration and cellular interaction have been analyzed using microscopy and biochemical assays. This co-culture system could be used as a disease model to obtain biological insight of pathological progression, as well as a tool to evaluate the efficacy of different drugs for pharmaceutical studies.
IEEE Journal of Selected Topics in Quantum Electronics | 2015
Jinhong Guo; Xing Ma; Nishanth V. Menon; Chang Ming Li; Yanli Zhao; Yuejun Kang
We have developed a planar optofluidic chip for the analysis of tumor cell apoptosis by exciting dual fluorescence through the integrated fibers. In contrast to conventional cell apoptosis study that requires commercial flow cytometer with a very high price tag and bulky optics, our design was realized via a simple single-layer soft lithography fabrication process. The device performance was tested by characterizing the HeLa cell apoptosis induced by hydrogen peroxide. The performance of the proposed optofluidic chip was concurrently confirmed by fluorescent microscopy and benchmarked against a commercial flow cytometer. This study demonstrated the capability of the proposed optofluidic chip for cell apoptosis assay. The major advantages of this device include simple fabrication process, compact optical components, reliable performance, and low manufacturing cost, making it a promising platform for future mass-producible, inexpensive, and disposable on-chip investigation of biological samples.
Science Advances | 2015
Parijat Borah; Sivaramapanicker Sreejith; Palapuravan Anees; Nishanth V. Menon; Yuejun Kang; Ayyappanpillai Ajayaghosh; Yanli Zhao
A study of dye-loaded organosilica for photo-oxidation. Periodic mesoporous organosilica (PMO) has been widely used for the fabrication of a variety of catalytically active materials. We report the preparation of novel photo-responsive PMO with azobenzene-gated pores. Upon activation, the azobenzene gate undergoes trans-cis isomerization, which allows an unsymmetrical near-infrared squaraine dye (Sq) to enter into the pores. The gate closure by cis-trans isomerization of the azobenzene unit leads to the safe loading of the monomeric dye inside the pores. The dye-loaded and azobenzene-gated PMO (Sq-azo@PMO) exhibits excellent generation of reactive oxygen species upon excitation at 664 nm, which can be effectively used for the oxidation of phenol into benzoquinone in aqueous solution. Furthermore, Sq-azo@PMO as the catalyst was placed inside a custom-built, continuous-flow device to carry out the photo-oxidation of phenol to benzoquinone in the presence of 664-nm light. By using the device, about 23% production of benzoquinone with 100% selectivity was achieved. The current research presents a prototype of transforming heterogeneous catalysts toward practical use.
Chemistry-an Asian Journal | 2016
Divya Susan Philips; Sivaramapanicker Sreejith; Tingchao He; Nishanth V. Menon; Palapuravan Anees; Jomon Mathew; Sreedharan Sajikumar; Yuejun Kang; Mihaiela C. Stuparu; Handong Sun; Yanli Zhao; Ayyappanpillai Ajayaghosh
Deep tissue bioimaging with three-photon (3P) excitation using near-infrared (NIR) light in the second IR window (1.0-1.4 μm) could provide high resolution images with an improved signal-to-noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor-π-acceptor system (GMP) having 3P cross-section (σ3 ) of 1.78×10(-80) cm(6) s(2) photon(-2) and action cross-section (σ3 η3 ) of 2.31×10(-81) cm(6) s(2) photon(-2) , which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn(2+) binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10(-80) cm(6) s(2) photon(-2) and σ3 η3 of 3.33×10(-81) cm(6) s(2) photon(-2) . The application of this probe is demonstrated for ratiometric 3P imaging of Zn(2+) in vitro using HuH-7 cell lines. Furthermore, the Zn(2+) concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn(2+) ion imaging.