Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nissim Ofek is active.

Publication


Featured researches published by Nissim Ofek.


Nature | 2007

Interference between two indistinguishable electrons from independent sources

Izhar Neder; Nissim Ofek; Yunchul Chung; M. Heiblum; Diana Mahalu; V. Umansky

Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle’s wavefunctions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed; in these proposals it was shown that such correlations are a direct signature of quantum entanglement between the spatial degrees of freedom of the two particles (‘orbital entanglement’), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements. Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source, yielded similar information to that obtained from auto-correlation (shot noise) measurements. The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light. It is based on the electronic Mach–Zehnder interferometer that uses edge channels in the quantum Hall effect regime. Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov–Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov–Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov–Bohm oscillations, suggesting orbital entanglement between the two electron beams.


Nature | 2016

Extending the lifetime of a quantum bit with error correction in superconducting circuits

Nissim Ofek; Andrei Petrenko; Reinier Heeres; Philip Reinhold; Zaki Leghtas; Brian Vlastakis; Yehan Liu; Luigi Frunzio; S. M. Girvin; Liang Jiang; Mazyar Mirrahimi; Michel H. Devoret; R. J. Schoelkopf

Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.


Science | 2016

A Schrodinger cat living in two boxes

Chen Wang; Yvonne Y. Gao; Philip Reinhold; Reinier Heeres; Nissim Ofek; Kevin Chou; Christopher Axline; Matthew Reagor; Jacob Blumoff; Katrina Sliwa; Luigi Frunzio; S. M. Girvin; Liang Jiang; Mazyar Mirrahimi; Michel H. Devoret; R. J. Schoelkopf

Quantum cats here and there The story of Schrödingers cat being hidden away in a box and being both dead and alive is often invoked to illustrate the how peculiar the quantum world can be. On a twist of the dead/alive behavior, Wang et al. now show that the cat can be in two separate locations at the same time. Constructing their cat from coherent microwave photons, they show that the state of the “electromagnetic cat” can be shared by two separated cavities. Going beyond common-sense absurdities of the classical world, the ability to share quantum states in different locations could be a powerful resource for quantum information processing. Science, this issue p. 1087 A quantum cat can be both alive and dead and in two places at once. Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as “cat states,” have been an elegant demonstration of Schrödinger’s famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum nondemolition measurements of the joint photon number parity. The ability to manipulate such multicavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.


Nature | 2010

Observation of neutral modes in the fractional quantum Hall regime

Aveek Bid; Nissim Ofek; M. Heiblum; C. L. Kane; V. Umansky; Diana Mahalu

The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle–hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy—the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state.


Physical Review B | 2016

A quantum memory with near-millisecond coherence in circuit QED

Matthew Reagor; Wolfgang Pfaff; Christopher Axline; Reinier Heeres; Nissim Ofek; Katrina Sliwa; Eric Holland; Chen Wang; Jacob Blumoff; Kevin Chou; M. Hatridge; Luigi Frunzio; Michel H. Devoret; Liang Jiang; R. J. Schoelkopf

Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime

Nissim Ofek; Aveek Bid; M. Heiblum; Ady Stern; V. Umansky; Diana Mahalu

Interference of edge channels is expected to be a prominent tool for studying statistics of charged quasiparticles in the quantum Hall effect (QHE). We present here a detailed study of an electronic Fabry–Perot interferometer (FPI) operating in the QHE regime [C. Chamon, et al. (1997) Phys Rev B 55:2331–2334], with the phase of the interfering quasiparticles controlled by the Aharonov–Bohm effect. Our main finding is that Coulomb interactions among the electrons dominate the interference, even in a relatively large area FPI, leading to a strong dependence of the area enclosed by the interference loop on the magnetic field. In particular, for a composite edge structure, with a few independent edge channels propagating along the edge, interference of the outmost edge channel (belonging to the lowest Landau level) was insensitive to magnetic field—suggesting a constant enclosed flux. However, when any of the inner edge channels interfered, the enclosed flux decreased when the magnetic field increased. By intentionally varying the enclosed area with a biased metallic gate and observing the periodicity of the interference pattern, charges e (for integer filling factors) and e/3 (for a fractional filling factor) were found to be expelled from the FPI. Moreover, these observations provided also a novel way of detecting the charge of the interfering quasiparticles.


Nature Communications | 2017

Implementing a universal gate set on a logical qubit encoded in an oscillator

Reinier Heeres; Philip Reinhold; Nissim Ofek; Luigi Frunzio; Liang Jiang; Michel H. Devoret; R. J. Schoelkopf

A logical qubit is a two-dimensional subspace of a higher dimensional system, chosen such that it is possible to detect and correct the occurrence of certain errors. Manipulation of the encoded information generally requires arbitrary and precise control over the entire system. Whether based on multiple physical qubits or larger dimensional modes such as oscillators, the individual elements in realistic devices will always have residual interactions, which must be accounted for when designing logical operations. Here we demonstrate a holistic control strategy which exploits accurate knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system. We use this approach to realize high-fidelity (98.5%, inferred), decoherence-limited operations on a logical qubit encoded in a superconducting cavity resonator using four-component cat states. Our results show the power of applying numerical techniques to control linear oscillators and pave the way for utilizing their large Hilbert space as a resource in quantum information processing.A logical qubit is a two-dimensional subspace of a higher dimensional system, whose manipulation requires precise control over the whole system. Here the authors demonstrate a control strategy which exploits precise knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system.


Physical Review Letters | 2016

Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit

U. Vool; S. Shankar; S.O. Mundhada; Nissim Ofek; A. Narla; Katrina Sliwa; E. Zalys-Geller; Yehan Liu; Luigi Frunzio; R. J. Schoelkopf; S. M. Girvin; Michel H. Devoret

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.


Nature Communications | 2015

Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality

Brian Vlastakis; Andrei Petrenko; Nissim Ofek; Luyan Sun; Zaki Leghtas; Katrina Sliwa; Yehan Liu; M. Hatridge; Jacob Blumoff; Luigi Frunzio; Mazyar Mirrahimi; Liang Jiang; Michel H. Devoret; R. J. Schoelkopf

The Schrodingers cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser–Horne–Shimony–Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators.


PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors | 2011

Observation of Neutral Modes In The Fractional Quantum Hall Effect Regime

Aveek Bid; Nissim Ofek; M. Heiblum; C. L. Kane; V. Umansky; Diana Mahalu

We report on the first experimental observation of neutral modes in particle‐hole conjugate fractional quantum Hall states using shot noise measurements. The presence of the neutral modes, in addition to producing excess noise in a quantum point contact (QPC), was seen to affect strongly the charge of the tunneling quasiparticles of the charge mode in the QPC and to increase their apparent temperature. The observation of an upstream neutral mode in the 5/2 state may constitute an added indication of its non‐abelian nature.

Collaboration


Dive into the Nissim Ofek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Mahalu

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

M. Heiblum

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Umansky

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge