Nithya Narayanan
University of Louisville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nithya Narayanan.
Journal of Cerebral Blood Flow and Metabolism | 2014
Anuradha Kalani; Pradip K. Kamat; Anastasia Familtseva; Pankaj Chaturvedi; Nino Muradashvili; Nithya Narayanan; Suresh C. Tyagi; Neetu Tyagi
Although blood–brain barrier (BBB) integrity is maintained by the cross-talk of endothelial cells, junction proteins, and neurogliovascular network, the epigenetic mechanisms behind BBB permeability are largely unknown. We are reporting for the first time miR29b-mediated regulation of BBB, which is a novel mechanism underlying BBB integrity. We hypothesize that miR29b regulates BBB dysfunction by regulating DNMT3b, which consequently regulates the levels of metalloproteinases, that can eat up the membrane and junction proteins leading to leaky vasculature. In addition, 5′-azacytidine (5′-aza) was used to test its efficacy on BBB permeability. Blood–brain barrier disruption model was created by using homocysteine, and in the models miR29b was identified to be most affected, by using microRNA RT 2 -qPCR array. MiR29b mimics and inhibitors also confirmed that miR29b regulates the levels DNMT3b and MMP9. In hyperhomocysteinemic cystathionine-β-synthase deficient (CBS+/−) mice with high brain vessel permeability, miR29b levels were also high as compared with wild-type (WT) mice. Interestingly, 5′-aza improved BBB permeability by decreasing the expression of miR29b. In conclusion, our data suggested miR29b-mediated regulation of BBB dysfunction through DNMT3b and MMP9. It also potentiates the use of microRNAs as candidates for future epigenetic therapies in the improvement of BBB integrity.
Archives of Physiology and Biochemistry | 2013
Srikanth Givvimani; Sourav Kundu; Nithya Narayanan; F. Armaghan; Natia Qipshidze; Sathnur Pushpakumar; Thomas P. Vacek; Suresh C. Tyagi
Abstract Pressure overload induces cardiac extracellular matrix (ECM) remodelling and results in heart failure. ECM remodelling by matrix metalloproteinases (MMPs) is primarily regulated by their target inhibitors, tissue inhibitor of matrix metalloproteinases (TIMPs). It is known that TIMP-2 is highly expressed in myocardium and is required for cell surface activation of pro-MMP-2. We and others have reported that imbalance between angiogenic growth factors and anti-angiogenic factors results in transition from compensatory cardiac hypertrophy to heart failure. We previously reported the pro-angiogenic role of MMP-2 in cardiac compensation, however, the specific role of TIMP-2 during pressure overload is yet unclear. We hypothesize that genetic ablation of TIMP-2 exacerbates the adverse cardiac matrix remodelling due to lack of pro-angiogenic MMP-2 and increase in anti-angiogenic factors during pressure overload stress and results in severe heart failure. To verify this, ascending aortic banding (AB) was created to mimic pressure overload, in wild type C57BL6/J and TIMP-2-/- (model of MMP-2 deficiency) mice. Left ventricular (LV) function assessed by echocardiography and pressure-volume loop studies showed severe LV dysfunction in TIMP-2-/- AB mice compared to controls. Expression of MMP-2, vascular endothelial growth factor (VEGF) was decreased and expression of MMP-9, anti-angiogenic factors endostatin and angiostatin was increased in TIMP-2-/- AB mice compared with wild type AB mice. Connexins (Cx) are the gap junction proteins that are widely present in the myocardium and play an important role in endothelial-myocyte coupling. Our results showed that expression of Cx 37 and 43 was decreased in TIMP-2-/- AB mice compared with corresponding wild type controls. These results suggest that genetic ablation of TIMP-2 decrease the expression of pro-angiogenic MMP-2, VEGF and increases anti-angiogenic factors that results in exacerbated abnormal ventricular remodelling leading to severe heart failure.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2012
Srikanth Givvimani; Charu Munjal; Nithya Narayanan; Farrukh Aqil; Geetansh Tyagi; Naira Metreveli; Suresh C. Tyagi
Elevated levels of plasma homocysteine (Hcy) called hyperhomocysteinemia (HHcy) have been implicated in inflammation and remodeling in intestinal vasculature, and HHcy is also known to aggravate the pathogenesis of inflammatory bowel disease (IBD). Interestingly, colon is the pivotal site that regulates Hcy levels in the plasma. We hypothesize that HHcy decreases intestinal motility through matrix metalloproteinase-9 (MMP-9)-induced intestinal remodeling leading to constipation. To verify this hypothesis, we used C57BL/6J or wild-type (WT), cystathionine β-synthase (CBS(+/-)), MMP-9(-/-), and MMP-9(-/-) + Hcy mice. Intestinal motility was assessed by barium meal studies and daily feces output. Plasma Hcy levels were measured by HPLC. Expression of ICAM-1, inducible nitric oxide synthase, MMP-9, and tissue inhibitors of MMPs was studied by Western blot and immunohistochemistry. Reactive oxygen species (ROS) including super oxide were measured by the Invitrogen molecular probe method. Tissue nitric oxide levels were assessed by a commercially available kit. Plasma Hcy levels in the treated MMP-9 group mice were comparable to CBS(+/-) mice. Barium meal studies suggest that intestinal motility is significantly decreased in CBS(+/-) mice compared with other groups. Fecal output-to-body weight ratio was significantly reduced in CBS(+/-) mice compared with other groups. There was significant upregulation of MMP-9, iNOS, and ICAM-1 expression in the colon from CBS(+/-) mice compared with WT mice. Levels of ROS, superoxide, and inducible nitric oxide were elevated in the CBS(+/-) mice compared with other groups. Results suggest that HHcy decreases intestinal motility due to MMP-9-induced intestinal remodeling leading to constipation.
Pharmacology | 2013
Srikanth Givvimani; Nithya Narayanan; F. Armaghan; Sathnur Pushpakumar; Suresh C. Tyagi
Background: Vasomotor responses conducted from terminal arterioles to proximal vessels may contribute to match tissue demands and blood supply during skeletal muscle contraction. Conduction of vasodilatation (CVD) from distal resistance arterioles to the proximal arterioles and feeding arteries during metabolic demand is mediated by intercellular gap junctions in the vascular endothelium. The role of hyperhomocysteinemia (HHcy) in the musculoskeletal system during CVD is unclear. We hypothesize that during HHcy, there is impaired CVD due to decreased expression of endothelial-associated connexins and thus decreased tissue perfusion to the contracting skeletal muscles. Methods: CVD studies were performed in a gluteus maximus muscle preparation of wild-type (C57BL6/J) and CBS-/+ (HHcy) mice using intravital microscopy. Expression of connexins and myostatin protein (an antiskeletal muscle statin) was studied by Western blot and immunohistochemistry methods. Tissue perfusion to acetylcholine was assessed by the laser Doppler technique. Results: There was decreased CVD and tissue perfusion in response to acetylcholine in CBS-/+ mice compared to wild-type controls. There was decreased expression of connexins 37, 40 and 43 and increased expression of myostatin in CBS-/+ mice compared to wild-type controls. Conclusion: Our findings suggest that CVD in skeletal muscle is decreased during HHcy due to decreased expression of gap junction connexins.
Canadian Journal of Physiology and Pharmacology | 2015
Srikanth Givvimani; Sourav Kundu; Sathnur Pushpakumar; Vivian Doyle; Nithya Narayanan; Lee J. Winchester; Sudhakar Veeranki; Naira Metreveli; Suresh C. Tyagi
Paraoxanase-1 (PON1) is an HDL-associated enzyme that contributes to the antioxidant and antiatherosclerotic properties of HDL. Lack of PON1 results in dysfunctional HDL. HHcy is a risk factor for cardiovascular disorders, and instigates vascular dysfunction and ECM remodeling. Although studies have reported HHcy during atherosclerosis, the exact mechanism is unclear. Here, we hypothesize that dysfunctional HDL due to lack of PON1 contributes to endothelial impairment and atherogenesis through HHcy-induced ECM re-modeling. To verify this hypothesis, we used C57BL6/J and PON1 knockout mice (KO) and fed them an atherogenic diet. The expression of Akt, ADMA, and DDAH, as well as endothelial gap junction proteins such as Cx-37 and Cx-40 and eNOS was measured for vascular dysfunction and inflammation. We observed that cardiac function was decreased and plasma Hcy levels were increased in PON1 KO mice fed the atherogenic diet compared with the controls. Expression of Akt, eNOS, DDAH, Cx-37, and Cx-40 was decreased, and the expression of MMP-9 and ADMA was increased in PON1 KO mice fed an atherogenic diet compared with the controls. Our results suggest that HHcy plays an intricate role in dysfunctional HDL, owing to the lack of PON1. This contributes to vascular endothelial impairment and atherosclerosis through MMP-9-induced vascular remodeling.
The FASEB Journal | 2014
Nithya Narayanan; Sathnur Pushpakumar; Srikanth Givvimani; Sourav Kundu; Naira Metreveli; Dexter James; Adrienne P. Bratcher; Suresh C. Tyagi
International journal of physiology, pathophysiology and pharmacology | 2013
Nithya Narayanan; Neetu Tyagi; Amy Shah; Sebastian Pagni; Suresh C. Tyagi
The FASEB Journal | 2015
Sathnur Pushpakumar; Sourav Kundu; Nithya Narayanan; Utpal Sen
International journal of biomedical science : IJBS | 2014
Srikanth Givvimani; Nithya Narayanan; Sathnur Pushpakumar; Suresh C. Tyagi
Archive | 2014
Nithya Narayanan