Nitin Mantri
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nitin Mantri.
BMC Genomics | 2007
Nitin Mantri; Rebecca Ford; Tristan E. Coram; Edwin Pang
BackgroundCultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes.ResultsThe transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE) between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea.ConclusionThe annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.
Archive | 2012
Nitin Mantri; V. Y. Patade; Suprasanna Penna; Rebecca Ford; Edwin Pang
Drought, cold, high-salinity and heat are major abiotic stresses that severely reduce the yield of food crops worldwide. Traditional plant breeding approaches to improve abiotic stress tolerance of crops had limited success due to multigenic nature of stress tolerance. In the last decade, molecular techniques have been used to understand the mechanisms by which plants perceive environmental signals and further their transmission to cellular machinery to activate adaptive responses. This knowledge is critical for the development of rational breeding and transgenic strategies to impart stress tolerance in crops. Studies on physiological and molecular mechanisms of abiotic stress tolerance have led to characterisation of a number of genes associated with stress adaptation. Techniques like microarrays have proven to be invaluable in generating a list of stress-related genes. Some of these genes are specific for a particular stress while others are shared between various stresses. Interestingly, a number of genes are shared in abiotic and biotic stress responses. This highlights the complexity of stress response and adaptation in plants. There is a whole cascade of genes involved in abiotic stress tolerance; starting from stress perception to transcriptional activation of downstream genes leading to stress adaptation and tolerance. A number of these genes have been discovered but we still do not have the complete list with all interactions. There is also significant number of genes with unknown functions found to be regulated by abiotic stresses. Understanding the function of these genes and their interaction with other known genes to effect stress adaptation is required.
Scientific Reports | 2016
Rohini Garg; Rama Shankar; Bijal Thakkar; Himabindu Kudapa; Lakshmanan Krishnamurthy; Nitin Mantri; Rajeev K. Varshney; Sabhyata Bhatia; Mukesh K. Jain
Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea.
The Plant Genome | 2013
Nitin Mantri; Nagalingam Basker; Rebecca Ford; Edwin Pang; Varsha Pardeshi
Legumes are special group of N‐fixing plants that are an essential component of cropping system and important source of food and feed for human and animal consumption. Like other crops, the productivity of legumes is threatened by environmental stresses caused due to global climate change. Abiotic stress tolerance is complex trait involving a suite of genes, the expression of which is controlled by transcription factors including gene and/or polypeptide sequences. Recently, micro‐ribonucleic acids (miRNAs) have been increasingly recognized for their role in regulating the synthesis of polypeptides from different messenger ribonucleic acids (mRNAs) including those that act as transcription factors. This review summarizes the current knowledge on the role of different miRNAs in response to main abiotic stresses in legumes. We found consistent as well as conflicting results within and between different legume species. This highlights that we have barely scratched the surface and very comprehensive and targeted experiments will be required in future to underpin the role of miRNAs in controlling the expression of important genes associated with abiotic stress tolerances.
PLOS ONE | 2012
Peng Sun; Nitin Mantri; Heqiang Lou; Ya Hu; Dan Sun; Yueqing Zhu; Tingting Dong; Hongfei Lu
We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth.
PLOS ONE | 2012
Nitin Mantri; Alexandra Olarte; Chun Guang Li; Charlie Changli Xue; Edwin Pang
Background Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. Methodology/Principal Findings Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5%) subtraction efficiency. Twenty-five Asterid species (mostly medicinal) representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. Conclusions/Significance Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting) plant species. In addition, this method allowed detection of several new loci that can be explored to solve existing discrepancies in phylogenetics and fingerprinting of plants.
Journal of the Science of Food and Agriculture | 2011
Linhai Niu; Nitin Mantri; Chun Guang Li; Charlie Changli Xue; Hans Wohlmuth; Edwin Pang
BACKGROUND Food adulteration remains a major global concern. DNA fingerprinting has several advantages over chemical and morphological identification techniques. DNA microarray-based fingerprinting techniques have not been used previously to detect adulteration involving dried commercial samples of closely related species. Here we report amplification of low-level DNA obtained from dried commercial ginseng samples using the Qiagen REPLI-g Kit. Further, we used a subtracted diversity array (SDA) to fingerprint the two ginseng species, Panax ginseng and Panax quinquefolius, that are frequently mixed for adulteration. RESULTS The two ginseng species were successfully discriminated using SDA. Further, SDA was sensitive enough to detect a deliberate adulteration of 10% P. quinquefolius in P. ginseng. Thirty-nine species-specific features including 30 P. ginseng-specific and nine P. quinquefolius-specific were obtained. This resulted in a feature polymorphism rate of 10.5% from the 376 features used for fingerprinting the two ginseng species. The functional characterization of 14 Panax species-specific features by sequencing revealed one putative ATP synthase, six putative uncharacterized proteins, and two retroelements to be different in these two species. CONCLUSION SDA can be employed to detect adulterations in a broad range of plant samples.
Critical Reviews in Biotechnology | 2017
Naghmeh Nejat; James Rookes; Nitin Mantri; David M. Cahill
Abstract Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
Cellular and Molecular Life Sciences | 2015
Danielle Kamato; Muhamad Ashraf Rostam; Rebekah Bernard; Terrence J. Piva; Nitin Mantri; Daniel Guidone; Wenhua Zheng; Narin Osman; Peter J. Little
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the “triple membrane bypass” pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.
Functional Plant Biology | 2007
Tristan E. Coram; Nitin Mantri; Rebecca Ford; Edwin Pang
Chickpea is a valuable and important agricultural crop, but yield potential is limited by a series of biotic and abiotic stresses, including Ascochyta blight, Fusarium wilt, drought, cold and salinity. To accelerate molecular breeding efforts for the discovery and introgression of stress tolerance genes into cultivated chickpea, functional genomics approaches are rapidly growing. Recently a series of genetic tools for chickpea have become available that have allowed high-powered functional genomics studies to proceed, including a dense genetic map, large insert genome libraries, expressed sequence tag libraries, microarrays, serial analysis of gene expression, transgenics and reverse genetics. This review summarises the development of these genomic tools and the achievements made in initial and emerging functional genomics studies. Much of the initial research focused on Ascochyta blight resistance, and a resistance model has been synthesised based on the results of various studies. Use of the rich comparative genomics resources from the model legumes Medicago truncatula and Lotus japonicus is also discussed. Finally, perspectives on the future directions for chickpea functional genomics, with the goal of developing elite chickpea cultivars, are discussed.