Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nitin S. Baliga is active.

Publication


Featured researches published by Nitin S. Baliga.


Nature | 2012

Peroxiredoxins are conserved markers of circadian rhythms

Rachel S. Edgar; Edward W. Green; Yuwei Zhao; Gerben van Ooijen; María Olmedo; Ximing Qin; Yao Xu; Min Pan; Utham K. Valekunja; Kevin A. Feeney; Elizabeth S. Maywood; Michael H. Hastings; Nitin S. Baliga; Martha Merrow; Andrew J. Millar; Carl Hirschie Johnson; Charalambos P. Kyriacou; John S. O’Neill; Akhilesh B. Reddy

Cellular life emerged ∼3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles owing to the Earth’s rotation. The advantage conferred on organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation–reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription–translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular timekeeping with redox homeostatic mechanisms after the Great Oxidation Event ∼2.5 billion years ago.


Proceedings of the National Academy of Sciences of the United States of America | 2008

CTCF physically links cohesin to chromatin

Eric D. Rubio; David Reiss; Piri Welcsh; Christine M. Disteche; Galina N. Filippova; Nitin S. Baliga; Ruedi Aebersold; Jeffrey A. Ranish; Anton Krumm

Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesins association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.


Genome Biology | 2006

The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo

Richard Bonneau; David J. Reiss; Paul Shannon; Marc T. Facciotti; Leroy Hood; Nitin S. Baliga; Vesteinn Thorsson

We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacteriums global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified.


Cell | 2007

A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell

Richard Bonneau; Marc T. Facciotti; David Reiss; Amy K. Schmid; Min Pan; Amardeep Kaur; Vesteinn Thorsson; Paul Shannon; Michael H. Johnson; J Christopher Bare; William Longabaugh; Madhavi Vuthoori; Kenia Whitehead; Aviv Madar; Lena Suzuki; Tetsuya Mori; Dong Eun Chang; Jocelyne DiRuggiero; Carl Hirschie Johnson; Leroy Hood; Nitin S. Baliga

The environment significantly influences the dynamic expression and assembly of all components encoded in the genome of an organism into functional biological networks. We have constructed a model for this process in Halobacterium salinarum NRC-1 through the data-driven discovery of regulatory and functional interrelationships among approximately 80% of its genes and key abiotic factors in its hypersaline environment. Using relative changes in 72 transcription factors and 9 environmental factors (EFs) this model accurately predicts dynamic transcriptional responses of all these genes in 147 newly collected experiments representing completely novel genetic backgrounds and environments-suggesting a remarkable degree of network completeness. Using this model we have constructed and tested hypotheses critical to this organisms interaction with its changing hypersaline environment. This study supports the claim that the high degree of connectivity within biological and EF networks will enable the construction of similar models for any organism from relatively modest numbers of experiments.


BMC Bioinformatics | 2006

Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

David Reiss; Nitin S. Baliga; Richard Bonneau

BackgroundThe learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically, and/or evolutionarily) associated, and such a priori known or pre-computed associations can provide support for appropriately grouping genes. One important association is the presence of one or more common cis-regulatory motifs. In organisms where these motifs are not known, their de novo detection, integrated into the clustering algorithm, can help to guide the process towards more biologically parsimonious solutions.ResultsWe have developed an algorithm, cMonkey, that detects putative co-regulated gene groupings by integrating the biclustering of gene expression data and various functional associations with the de novo detection of sequence motifs.ConclusionWe have applied this procedure to the archaeon Halobacterium NRC-1, as part of our efforts to decipher its regulatory network. In addition, we used cMonkey on public data for three organisms in the other two domains of life: Helicobacter pylori, Saccharomyces cerevisiae, and Escherichia coli. The biclusters detected by cMonkey both recapitulated known biology and enabled novel predictions (some for Halobacterium were subsequently confirmed in the laboratory). For example, it identified the bacteriorhodopsin regulon, assigned additional genes to this regulon with apparently unrelated function, and detected its known promoter motif. We have performed a thorough comparison of cMonkey results against other clustering methods, and find that cMonkey biclusters are more parsimonious with all available evidence for co-regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach

Nitin S. Baliga; Min Pan; Young Ah Goo; Eugene C. Yi; David R. Goodlett; Krassen Dimitrov; Paul Shannon; Ruedi Aebersold; Wailap Victor Ng; Leroy Hood

The extremely halophilic archaeon Halobacterium NRC-1 can switch from aerobic energy production (energy from organic compounds) to anaerobic phototrophy (energy from light) by induction of purple membrane biogenesis. The purple membrane is made up of multiple copies of a 1:1 complex of bacterioopsin (Bop) and retinal called bacteriorhodopsin that functions as a light-driven proton pump. A light- and redox-sensing transcription regulator, Bat, regulates critical genes encoding the biogenesis of the purple membrane. To better understand the regulatory network underlying this physiological state, we report a systems approach using global mRNA and protein analyses of four strains of Halobacterium sp.: the wild-type, NRC-1; and three genetically perturbed strains: S9 (bat+), a purple membrane overproducer, and two purple membrane deficient strains, SD23 (a bop knockout) and SD20 (a bat knockout). The integrated DNA microarray and proteomic data reveal the coordinated coregulation of several interconnected biochemical pathways for phototrophy: isoprenoid synthesis, carotenoid synthesis, and bacteriorhodopsin assembly. In phototrophy, the second major biomodule for ATP production, arginine fermentation, is repressed. The primary systems level insight provided by this study is that two major energy production pathways in Halobacterium sp., phototrophy and arginine fermentation, are inversely regulated, presumably to achieve a balance in ATP production under anaerobic conditions.


Molecular Systems Biology | 2009

Prevalence of transcription promoters within archaeal operons and coding sequences.

Tie Koide; David Reiss; J Christopher Bare; Wyming Lee Pang; Marc T. Facciotti; Amy K. Schmid; Min Pan; Bruz Marzolf; Phu T. Van; Fang Yin Lo; Abhishek Pratap; Eric W. Deutsch; Amelia Peterson; Daniel B. Martin; Nitin S. Baliga

Despite the knowledge of complex prokaryotic‐transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well‐defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome‐wide characterization of transcript structures of ∼64% of all genes, including putative non‐coding RNAs in Halobacterium salinarum NRC‐1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment‐dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non‐functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.


Molecular Microbiology | 2000

Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors?

Nitin S. Baliga; Young Ah Goo; Wailap Victor Ng; Leroy Hood; Charles J. Daniels; Shiladitya DasSarma

Sir, Gene expression is regulated by different mechanisms in different organisms. The bacterial core RNA polymerase (a2bb 0) discriminates between subsets of promoters by binding different s factors. Eukaryotes have evolved a more complicated system making use of three RNA polymerases to direct synthesis from different promoter families. Archaea possess a simplified version of RNA polymerase II transcription machinery with a single multisubunit RNA polymerase and a subset, TBP and TFIIB, of general transcription factors (Reeve et al., 1997, Cell 89: 999±1002). However, multiple transcription factor homologues have been identified in several archaea including Halobacterium NRC-1 (Ng et al., 1998, Genome Res 8: 1131±1141), Haloferax volcanii (Thompson et al., 1999, Mol Microbiol 33: 1081±1092) and Pyrococcus horikoshii OT3 (Kawarabayasi et al., 1998, DNA Res 5: 147±155). With the impending completion of the Halobacterium NRC-1 genome project, this extreme halophile is turning out to be a champion of multiple transcription factors, with six tbp and seven tfb genes (http://zdna.micro. umass.edu/haloweb).


Proceedings of the National Academy of Sciences of the United States of America | 2007

General transcription factor specified global gene regulation in archaea

Marc T. Facciotti; David Reiss; Min Pan; Amardeep Kaur; Madhavi Vuthoori; Richard Bonneau; Paul Shannon; Alok Srivastava; Samuel M. Donohoe; Leroy Hood; Nitin S. Baliga

Cells responding to dramatic environmental changes or undergoing a developmental switch typically change the expression of numerous genes. In bacteria, σ factors regulate much of this process, whereas in eukaryotes, four RNA polymerases and a multiplicity of generalized transcription factors (GTFs) are required. Here, by using a systems approach, we provide experimental evidence (including protein-coimmunoprecipitation, ChIP-Chip, GTF perturbation and knockout, and measurement of transcriptional changes in these genetically perturbed strains) for how archaea likely accomplish similar large-scale transcriptional segregation and modulation of physiological functions. We are able to associate GTFs to nearly half of all putative promoters and show evidence for at least 7 of the possible 42 functional GTF pairs. This report represents a significant contribution toward closing the gap in our understanding of gene regulation by GTFs for all three domains of life and provides an example for how to use various experimental techniques to rapidly learn significant portions of a global gene regulatory network of organisms for which little has been previously known.


Molecular Systems Biology | 2006

An integrated systems approach for understanding cellular responses to gamma radiation

Kenia Whitehead; Adrienne Kish; Min Pan; Amardeep Kaur; David Reiss; Nichole King; Laura Hohmann; Jocelyne DiRuggiero; Nitin S. Baliga

Cellular response to stress entails complex mRNA and protein abundance changes, which translate into physiological adjustments to maintain homeostasis as well as to repair and minimize damage to cellular components. We have characterized the response of the halophilic archaeon Halobacterium salinarum NRC‐1 to 60Co ionizing gamma radiation in an effort to understand the correlation between genetic information processing and physiological change. The physiological response model we have constructed is based on integrated analysis of temporal changes in global mRNA and protein abundance along with protein–DNA interactions and evolutionarily conserved functional associations. This systems view reveals cooperation among several cellular processes including DNA repair, increased protein turnover, apparent shifts in metabolism to favor nucleotide biosynthesis and an overall effort to repair oxidative damage. Further, we demonstrate the importance of time dimension while correlating mRNA and protein levels and suggest that steady‐state comparisons may be misleading while assessing dynamics of genetic information processing across transcription and translation.

Collaboration


Dive into the Nitin S. Baliga's collaboration.

Top Co-Authors

Avatar

Min Pan

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leroy Hood

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serdar Turkarslan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Shannon

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge