Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nitsan Kozlovsky is active.

Publication


Featured researches published by Nitsan Kozlovsky.


Biological Psychiatry | 2006

Blunted HPA axis response to stress influences susceptibility to posttraumatic stress response in rats.

Hagit Cohen; Joseph Zohar; Yori Gidron; Michael A. Matar; Dana Belkind; Uri Loewenthal; Nitsan Kozlovsky; Zeev Kaplan

BACKGROUND Posttraumatic stress disorder (PTSD) is associated with low levels of circulating cortisol, and recent studies suggest that cortisol administration may reduce PTSD symptoms. This study investigated the role of cortisol in the manifestation of anxiety- and fear-like symptoms in an animal model of PTSD. METHOD Magnitude of changes in prevalence of anxiety-like behaviors on the elevated plus-maze and nonhabituated exaggerated startle reaction were compared in three strains of rats exposed to predator stress, with and without prior corticosterone treatment. Extreme behavioral changes in both paradigms implied an extreme behavioral response (EBR), representing PTSD-like symptoms. RESULTS Lewis rats exhibited greater baseline anxiety-like behaviors and greater stress-induced increases in anxiety-like behaviors than Fischer F344 or Sprague-Dawley rats, with only minor corticosterone increases following stress. Prevalence of EBR was 50% among Lewis rats compared with 10% of Fischer F344 and 25% of Sprague-Dawley rats. Administering corticosterone 1 hour before stress exposure reduced the prevalence of EBR from 50% to 8% in the Lewis rats. CONCLUSIONS These results suggest that a blunted HPA response to stress may play a causal role in this model of PTSD and that this susceptibility may be prevented by administration of cortisol before stress exposure.


Neuropsychopharmacology | 2012

The Neuropeptide Y (NPY)-ergic System is Associated with Behavioral Resilience to Stress Exposure in an Animal Model of Post-Traumatic Stress Disorder

Hagit Cohen; Tianmin Liu; Nitsan Kozlovsky; Zeev Kaplan; Joseph Zohar; Aleksander A. Mathé

Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.


The International Journal of Neuropsychopharmacology | 2007

Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response

Nitsan Kozlovsky; Michael A. Matar; Zeev Kaplan; Moshe Kotler; Joseph Zohar; Hagit Cohen

Brain-derived neurotrophic factor (BDNF) and its intracellular kinase-activating receptor TrkB, have been implicated in the neurobiological mechanisms underlying the clinical manifestations of PTSD, especially those related to synaptic efficacy and neural plasticity. BDNF interacts with components of the stress response such as corticosterone, and plays an important role in growth, maintenance and functioning of several neuronal systems. This study employed an animal model of PTSD to investigate the relationship between prevalence rates of distinct patterns of behavioural responses to predator stress, circulating levels of corticosterone and local levels of mRNA for BDNF, TrkB and two other neurotrophic factors in selected brain areas. Animals whose behaviour was extremely disrupted by exposure selectively displayed significant down-regulation of mRNA for BDNF and up-regulation of TrkB mRNA in the CA1 subregion of the hippocampus, compared to animals whose behaviour was minimally or partially affected and to unexposed controls. The response was consistent throughout the entire study only in CA1. The consistent long-term the BDNF down-regulation and TrkB up-regulation associated with extreme behavioural compromise may be associated with chronic stress-induced psychopathological processes, especially in the hippocampus. The corresponding changes in neural plasticity and synaptic functioning may mediate clinical manifestations of PTSD.


Schizophrenia Research | 2001

Low GSK-3 activity in frontal cortex of schizophrenic patients

Nitsan Kozlovsky; R.H. Belmaker; Galila Agam

Glycogen synthase kinase-3 (GSK-3) (EC 2.7.1.37) is a protein kinase highly abundant in brain and involved in signal transduction cascades of multiple cellular processes, particularly neurodevelopment. Two forms of the enzyme, GSK-3alpha and -3beta have been previously identified. We have previously reported reduced GSK-3beta protein levels in postmortem frontal cortex of schizophrenic patients. In an attempt to explore whether reduction of GSK-3beta levels is brain region specific we examined it in occipital cortex. In order to find out if the reduction in frontal cortex is reflected in altered activity we measured GSK-3 enzymatic activity in this brain region. Western-blot analysis of GSK-3beta was carried out in postmortem occipital cortex of 15 schizophrenic, 15 bipolar, and 15 unipolar patients, and 15 normal controls. GSK-3 activity was measured by quantitating the phosphorylation of the specific substrate phospho-CREB in the frontal cortex specimens. GSK-3beta levels in occipital cortex did not differ between the four diagnostic groups. GSK-3 activity in the frontal cortex of schizophrenic patients was 45% lower than that of normal controls (0.196+/-0.082 and 0.357+/-0.084 pmol/mg proteinxmin, respectively; Kruskal-Wallis analysis: chi-square=8.27, df=3, p=0.04). The other two diagnostic groups showed no difference from the control group. Our results are consistent with the notion that schizophrenia involves neurodevelopmental pathology.


Biological Psychiatry | 2006

Anisomycin, a protein synthesis inhibitor, disrupts traumatic memory consolidation and attenuates posttraumatic stress response in rats.

Hagit Cohen; Zeev Kaplan; Michael A. Matar; Uri Loewenthal; Nitsan Kozlovsky; Joseph Zohar

BACKGROUND Paradoxical changes in memory represent a troublesome characteristic of posttraumatic stress disorder (PTSD). Exceptionally vivid intrusive memories of some aspects of the trauma are mingled with patchy amnesia regarding other important aspects. Molecular studies of the memory process suggest that the conversion from labile short-term memory into long-term fixed traces involves protein synthesis. This study assessed the effects of administration of anisomycin, a protein synthesis inhibitor, after initial exposure, after exposure to a cue associated with triggering experience, and after reexposure to the triggering trauma in an animal model of PTSD. METHOD Magnitude of changes in prevalence of anxiety-like behaviors on the elevated plus-maze and nonhabituated exaggerated startle reaction were compared in rats that were exposed to predator stress, with and without microinjection of anisomycin. RESULTS Microinjection of anisomycin before and after stress exposure reduced anxiety-like and avoidant behavior, reduced the mean startle amplitude, and reversed the stress-induced habituation deficit 7 days later. The persistent anxiety-like behaviors that were seen after stress exposure do not appear to be sensitive to anisomycin after reexposure to a cue associated with the event or after reexposure to the index experience. CONCLUSIONS Disruption of the process of traumatic memory consolidation may be useful for mitigating PTSD symptoms.


Free Radical Biology and Medicine | 1997

REACTIVE OXYGEN SPECIES ACTIVATE GLUCOSE TRANSPORT IN L6 MYOTUBES

Nitsan Kozlovsky; Assaf Rudich; R. Potashnik; Nava Bashan

Under oxidative stress, increased energy requirements are needed To induce repair mechanisms. As glucose is a major energy source in L6 myotubes, we evaluated glucose metabolism and transport, following exposure to glucose oxidase (H2O2 generating system), or xanthine oxidase (O2. and H2O2 generating system), added to the medium. Exposure for 24 h to 5 mM glucose and 50 mU/ml glucose oxidase, or to 50 microM xanthine and 20 mU/ml xanthine oxidase resulted in significant oxidant stress indicated by increased DNA binding activity of NF-kappa B. Under these conditions, approximately 2-fold increase in glucose consumption, lactate production and CO2 release were observed. 2-deoxyglucose uptake into myotubes increased time and dose dependently, reaching a 2.6 +/- 0.4-fold and 2.2 +/- 0.7-fold after 24 h exposure to glucose oxidase and xanthine oxidase, respectively. Peroxidase prevented this effect, indicating the role of H2O2 in mediating glucose uptake activation. The elevation in glucose uptake under oxidative stress was associated with increased expression of GLUT1 mRNA and protein. The observed 2-deoxyglucose uptake activation by oxidants was not limited to the L6 cell line and was observed in 3T3-L1 adipocytes as well.


Psychoneuroendocrinology | 2009

Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor

Noam Bazak; Nitsan Kozlovsky; Zeev Kaplan; Michael A. Matar; Hava Golan; Joseph Zohar; Gal Richter-Levin; Hagit Cohen

Early-life stress produces a cascade of neurobiological events that cause enduring changes in neural plasticity and synaptic efficacy that appear to play pivotal roles in the pathophysiology of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has been implicated in the neurobiological mechanisms of these changes, in interaction with components of the stress response, such as corticosterone. This study examined the consequences of juvenile stress for behavior during adulthood in association with circulating corticosterone levels and BDNF expression. The experiments examined single exposure to predator scent stress (soiled cat litter for 10 min) as compared to repeated exposure, early in life and later on. Behavioral responses were assessed in the elevated plus maze and the acoustic startle response paradigms at 28, 60 and 90 days of age. Plasma corticosterone was measured and brain areas analyzed for BDNF levels. The results show that juvenile stress exposure increased anxiety-like behavior and startle amplitude and decreased plasma corticosterone. This response was seen immediately after exposure and also long term. Adult stress exposure increased anxiety-like behavior, startle amplitude and plasma corticosterone. Exposure to both early and later life trauma elicited reduced levels of corticosterone following the initial exposure, which were not raised by re-exposure, and elicited significant downregulation of BDNF mRNA and protein levels in the hippocampus CA1 subregion. The consequences of adult stress exposure were more severe in rats were exposed to the same stressor as juveniles, indicated increased vulnerability. The results suggest that juvenile stress has resounding effects in adulthood reflected in behavioral responses. The concomitant changes in BDNF and corticosterone levels may mediate the changes in neural plasticity and synaptic functioning underlying clinical manifestations of PTSD.


The International Journal of Neuropsychopharmacology | 2006

Psychotropic drugs affect Ser9-phosphorylated GSK-3β protein levels in rodent frontal cortex

Nitsan Kozlovsky; Shirly Amar; R.H. Belmaker; Galila Agam

Glycogen synthase kinase (GSK)-3beta, a serine/threonine kinase highly abundant in brain is a negative regulator of signal transduction cascades including the phosphatidylinositol-3-kinase (PI3-K)/Akt and the Wnt. GSK-3beta has recently been suggested to be an intracellular target of the mood stabilizers lithium and valproate and of the typical and atypical antipsychotic agents haloperidol and clozapine. We have previously shown that these agents do not alter frontal cortex GSK-3beta protein levels or activity. The current study was conducted to assess the effect of psychotropic drugs on phospho-Ser9-GSK-3beta levels in rodents. Chronic administration of haloperidol to rats resulted in a significant reduction in frontal cortex phospho-Ser9-GSK-3beta protein levels and no change in those of GSK-3alpha, while chronic administration of clozapine or subchronic administration of valproate caused significant elevation of GSK-3beta protein levels. Mice treated chronically with lithium exhibited the most prominent elevation in phospho-Ser9-GSK-3beta. The results support the notion that GSK-3beta may be a common target for mood stabilizers and neuroleptics.


Journal of Neuroendocrinology | 2010

Hippocampal Microinfusion of Oxytocin Attenuates the Behavioural Response to Stress by Means of Dynamic Interplay with the Glucocorticoid‐Catecholamine Responses

Hagit Cohen; Zeev Kaplan; Nitsan Kozlovsky; Yori Gidron; Michael A. Matar; Joseph Zohar

The neurohypophysial hormone oxytocin acts as a central nervous system neurotransmitter/neuromodulator. We evaluated the effects of oxytocin on behavioural responses to stress, as well as associated biophysiological responses, in a controlled, prospective animal model. The long‐term effects of exogenous oxytocin microinjected to the hippocampus of male rats were assessed. Animals were exposed to predator scent stress and treated 1 h or 7 days later with oxytocin or vehicle. Behaviours were assessed with the elevated plus‐maze and acoustic startle response tests, 7 days after microinjection and freezing behaviour upon exposure to a trauma‐related cue on day 8. These data served for classification into behavioural response groups. Trauma cue response, circulating corticosterone and oxytocin, hippocampal expression of glucocorticoid and mineralocorticoid receptors, and oxytocin receptor mRNA levels were assessed. The interplay between oxytocin, corticosterone and norepinephrine was assessed. Microinfusion of oxytocin both immediately after predator scent stress exposure or 7 days later, after exposure to trauma cue significantly reduced the prevalence rates of extreme responders and reduced trauma cue freezing responses. Post‐exposure treatment with oxytocin significantly corrected the corticosterone stress response, decreased glucocorticoid receptor expression and increased mineralocorticoid receptor expression in the hippocampus compared to vehicle treatment. High‐dose corticosterone administration together with norepinephrine caused release of plasma oxytocin and hippocampal oxytocin receptor. Oxytocin is actively involved in the neurobiological response to predator scent stress processes and thus warrants further study as a potential therapeutic avenue for the treatment of anxiety‐related disorders.


World Journal of Biological Psychiatry | 2009

Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns

Adi Mazor; Michael A. Matar; Zeev Kaplan; Nitsan Kozlovsky; Joseph Zohar; Hagit Cohen

Background. Most epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder, post-traumatic stress disorder (PTSD) and major depressive disorder in women than in men. Few animal models of PTSD have taken gender differences into account and have typically used male subjects. In order to explore gender-related PTSD-like stress-responses more thoroughly, we applied an animal model that focuses selectively on individual patterns of behavioural responses. Methods. Prevalence rates of individual behavioural response to a single exposure to predator scent stress (PSS) were assessed by both elevated plus-maze and startle response paradigms. Prevalence rates of extreme behavioural disruption (EBR) on both tests were assessed, correlated to corticosterone levels, and compared to global population response data. In addition, we assessed learning and memory in the Morris water-maze (MWM). Results. There were no significant differences between the behavioural responses related to oestrous cycle phase in terms of global data for the groups or in terms of prevalence rates of EBR. The overall patterns of response of males and females were affected, yet females demonstrated greater levels of baseline anxiety-like behaviour and lower peak levels of post-exposure anxiety-like behaviour than males. However, the prevalence rates of individual subjects who responded with PTSD-like behaviour were equal for female and male subjects. PSS-exposed female subjects demonstrated significantly compromised performance in the MWM compared to males. Conclusions. In this animal model, the results clarified that the assumption that females are more vulnerable is true for the magnitude of the response, but not for the prevalence of pathological response patterns in rat populations.

Collaboration


Dive into the Nitsan Kozlovsky's collaboration.

Top Co-Authors

Avatar

Galila Agam

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hagit Cohen

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeev Kaplan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Michael A. Matar

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

R.H. Belmaker

Jerusalem Mental Health Center

View shared research outputs
Top Co-Authors

Avatar

Carmit Nadri

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Galit Shaltiel

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hady Shimon

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Joseph Levine

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge