Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nivedita Jena is active.

Publication


Featured researches published by Nivedita Jena.


Journal of Biological Chemistry | 2012

Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors

Jacques J. Kessl; Nivedita Jena; Yasuhiro Koh; Humeyra Taskent-Sezgin; Alison Slaughter; Lei Feng; Suresh de Silva; Li Wu; Stuart F. J. Le Grice; Alan Engelman; James R. Fuchs; Mamuka Kvaratskhelia

Background: 2-(Quinolin-3-yl)-acetic-acid derivatives target HIV-1 integrase and inhibit viral replication. Results: The compounds are allosteric integrase inhibitors (ALLINIs) that block integrase interactions with viral DNA and its cellular cofactor LEDGF and cooperatively inhibit HIV-1 replication. Conclusion: ALLINIs block multiple steps of HIV-1 integration. Significance: These new properties of ALLINIs will facilitate their further development as potent antiretroviral compounds. The multifunctional HIV-1 enzyme integrase interacts with viral DNA and its key cellular cofactor LEDGF to effectively integrate the reverse transcript into a host cell chromosome. These interactions are crucial for HIV-1 replication and present attractive targets for antiviral therapy. Recently, 2-(quinolin-3-yl) acetic acid derivatives were reported to selectively inhibit the integrase-LEDGF interaction in vitro and impair HIV-1 replication in infected cells. Here, we show that this class of compounds impairs both integrase-LEDGF binding and LEDGF-independent integrase catalytic activities with similar IC50 values, defining them as bona fide allosteric inhibitors of integrase function. Furthermore, we show that 2-(quinolin-3-yl) acetic acid derivatives block the formation of the stable synaptic complex between integrase and viral DNA by allosterically stabilizing an inactive multimeric form of integrase. In addition, these compounds inhibit LEDGF binding to the stable synaptic complex. This multimode mechanism of action concordantly results in cooperative inhibition of the concerted integration of viral DNA ends in vitro and HIV-1 replication in cell culture. Our findings, coupled with the fact that high cooperativity of antiviral inhibitors correlates with their increased instantaneous inhibitory potential, an important clinical parameter, argue strongly that improved 2-(quinolin-3-yl) acetic acid derivatives could exhibit desirable clinical properties.


PLOS Pathogens | 2014

A new class of multimerization selective inhibitors of HIV-1 integrase.

Amit Sharma; Alison Slaughter; Nivedita Jena; Lei Feng; Jacques J. Kessl; Hind J. Fadel; Nirav Malani; Frances Male; Li Wu; Eric M. Poeschla; Frederic D. Bushman; James R. Fuchs; Mamuka Kvaratskhelia

The quinoline-based allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are promising candidates for clinically useful antiviral agents. Studies using these compounds have highlighted the role of IN in both early and late stages of virus replication. However, dissecting the exact mechanism of action of the quinoline-based ALLINIs has been complicated by the multifunctional nature of these inhibitors because they both inhibit IN binding with its cofactor LEDGF/p75 and promote aberrant IN multimerization with similar potencies in vitro. Here we report design of small molecules that allowed us to probe the role of HIV-1 IN multimerization independently from IN-LEDGF/p75 interactions in infected cells. We altered the rigid quinoline moiety in ALLINIs and designed pyridine-based molecules with a rotatable single bond to allow these compounds to bridge between interacting IN subunits optimally and promote oligomerization. The most potent pyridine-based inhibitor, KF116, potently (EC50 of 0.024 µM) blocked HIV-1 replication by inducing aberrant IN multimerization in virus particles, whereas it was not effective when added to target cells. Furthermore, KF116 inhibited the HIV-1 IN variant with the A128T substitution, which confers resistance to the majority of quinoline-based ALLINIs. A genome-wide HIV-1 integration site analysis demonstrated that addition of KF116 to target or producer cells did not affect LEDGF/p75-dependent HIV-1 integration in host chromosomes, indicating that this compound is not detectably inhibiting IN-LEDGF/p75 binding. These findings delineate the significance of correctly ordered IN structure for HIV-1 particle morphogenesis and demonstrate feasibility of exploiting IN multimerization as a therapeutic target. Furthermore, pyridine-based compounds present a novel class of multimerization selective IN inhibitors as investigational probes for HIV-1 molecular biology.


Journal of Biological Chemistry | 2013

The A128T Resistance Mutation Reveals Aberrant Protein Multimerization as the Primary Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors

Lei Feng; Amit Sharma; Alison Slaughter; Nivedita Jena; Yasuhiro Koh; Nikolozi Shkriabai; Ross C. Larue; Pratiq A. Patel; Hiroaki Mitsuya; Jacques J. Kessl; Alan Engelman; James R. Fuchs; Mamuka Kvaratskhelia

Background: The A128T substitution in HIV-1 integrase (IN) confers resistance to allosteric integrase inhibitors (ALLINIs). Results: The A128T substitution does not significantly alter ALLINI IC50 values for IN-LEDGF/p75 binding but confers marked resistance to ALLINI-induced aberrant integrase multimerization. Conclusion: Allosteric perturbation of HIV-1 integrase multimerization underlies ALLINI antiviral activity. Significance: Our findings underscore the mechanism of ALLINI action and will facilitate development of second-generation compounds. Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a very promising new class of anti-HIV-1 agents that exhibit a multimodal mechanism of action by allosterically modulating IN multimerization and interfering with IN-lens epithelium-derived growth factor (LEDGF)/p75 binding. Selection of viral strains under ALLINI pressure has revealed an A128T substitution in HIV-1 IN as a primary mechanism of resistance. Here, we elucidated the structural and mechanistic basis for this resistance. The A128T substitution did not affect the hydrogen bonding between ALLINI and IN that mimics the IN-LEDGF/p75 interaction but instead altered the positioning of the inhibitor at the IN dimer interface. Consequently, the A128T substitution had only a minor effect on the ALLINI IC50 values for IN-LEDGF/p75 binding. Instead, ALLINIs markedly altered the multimerization of IN by promoting aberrant higher order WT (but not A128T) IN oligomers. Accordingly, WT IN catalytic activities and HIV-1 replication were potently inhibited by ALLINIs, whereas the A128T substitution in IN resulted in significant resistance to the inhibitors both in vitro and in cell culture assays. The differential multimerization of WT and A128T INs induced by ALLINIs correlated with the differences in infectivity of HIV-1 progeny virions. We conclude that ALLINIs primarily target IN multimerization rather than IN-LEDGF/p75 binding. Our findings provide the structural foundations for developing improved ALLINIs with increased potency and decreased potential to select for drug resistance.


Journal of Biological Chemistry | 2010

The Catecholaminergic Polymorphic Ventricular Tachycardia Mutation R33Q Disrupts the N-terminal Structural Motif That Regulates Reversible Calsequestrin Polymerization

Naresh C. Bal; Ashoke Sharon; Subash C. Gupta; Nivedita Jena; Sana Shaikh; Sandor Gyorke; Muthu Periasamy

Calsequestrin undergoes dynamic polymerization with increasing calcium concentration by front-to-front dimerization and back-to-back packing, forming wire-shaped structures. A recent finding that point mutation R33Q leads to lethal catecholaminergic polymorphic ventricular tachycardia (CPVT) implies a crucial role for the N terminus. In this study, we demonstrate that this mutation resides in a highly conserved alternately charged residue cluster (DGKDR; cluster 1) in the N-terminal end of calsequestrin. We further show that this cluster configures itself as a ring system and that the dipolar arrangement within the cluster brings about a critical conformational flip of Lys31-Asp32 essential for dimer stabilization by formation of a H-bond network. We additionally show that Ca2+-induced calsequestrin aggregation is nonlinear and reversible and can regain the native conformation by Ca2+ chelation with EGTA. This study suggests that cluster 1 works as a molecular switch and governs the bidirectional transition between the CASQ2 monomer and dimer. We further demonstrate that mutations disrupting the alternating charge pattern of the cluster, including R33Q, impair Ca2+-CASQ2 interaction, leading to altered polymerization-depolymerization dynamics. This study provides new mechanistic insight into the functional effects of the R33Q mutation and its potential role in CPVT.


Retrovirology | 2014

The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase.

Alison Slaughter; Kellie A. Jurado; Nanjie Deng; Lei Feng; Jacques J. Kessl; Nikoloz Shkriabai; Ross C. Larue; Hind J. Fadel; Pratiq A. Patel; Nivedita Jena; James R. Fuchs; Eric M. Poeschla; Ronald M. Levy; Alan Engelman; Mamuka Kvaratskhelia

BackgroundAllosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an important new class of anti-HIV-1 agents. ALLINIs bind at the IN catalytic core domain (CCD) dimer interface occupying the principal binding pocket of its cellular cofactor LEDGF/p75. Consequently, ALLINIs inhibit HIV-1 IN interaction with LEDGF/p75 as well as promote aberrant IN multimerization. Selection of viral strains emerging under the inhibitor pressure has revealed mutations at the IN dimer interface near the inhibitor binding site.ResultsWe have investigated the effects of one of the most prevalent substitutions, H171T IN, selected under increasing pressure of ALLINI BI-D. Virus containing the H171T IN substitution exhibited an ~68-fold resistance to BI-D treatment in infected cells. These results correlated with ~84-fold reduced affinity for BI-D binding to recombinant H171T IN CCD protein compared to its wild type (WT) counterpart. However, the H171T IN substitution only modestly affected IN-LEDGF/p75 binding and allowed HIV-1 containing this substitution to replicate at near WT levels. The x-ray crystal structures of BI-D binding to WT and H171T IN CCD dimers coupled with binding free energy calculations revealed the importance of the Nδ- protonated imidazole group of His171 for hydrogen bonding to the BI-D tert-butoxy ether oxygen and establishing electrostatic interactions with the inhibitor carboxylic acid, whereas these interactions were compromised upon substitution to Thr171.ConclusionsOur findings reveal a distinct mechanism of resistance for the H171T IN mutation to ALLINI BI-D and indicate a previously undescribed role of the His171 side chain for binding the inhibitor.


Biochemical Journal | 2011

Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.

Naresh C. Bal; Nivedita Jena; Danesh H. Sopariwala; Tuniki Balaraju; Sana Shaikh; Chandralata Bal; Ashoke Sharon; Sandor Gyorke; Muthu Periasamy

CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.


Biopolymers | 2015

The C-terminal calcium-sensitive disordered motifs regulate isoform-specific polymerization characteristics of calsequestrin

Naresh C. Bal; Nivedita Jena; Harapriya Chakravarty; Amit Kumar; Mei Chi; Tuniki Balaraju; Sharad V. Rawale; Jayashree S. Rawale; Ashoke Sharon; Muthu Periasamy

Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C‐terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn‐motif and DEXn‐motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C‐terminal motifs possess Ca2+‐sensitivity and affect protein function. Sequence analysis shows that both the Dn‐ and DEXn‐motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca2+‐mediated folding suggesting that these disordered motifs are Ca2+‐sensitivity. We generated chimeric proteins by swapping the C‐terminal portions between CASQ1 and CASQ2. Our studies show that the C‐terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C‐terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca2+‐sensitivity IDRs located at the back‐to‐back dimer interface influence isoform‐specific Ca2+‐dependent polymerization properties of CASQ.


Bioorganic & Medicinal Chemistry Letters | 2016

Indole-based allosteric inhibitors of HIV-1 integrase.

Pratiq A. Patel; Nina Kvaratskhelia; Yara Mansour; Janet Antwi; Lei Feng; Pratibha C. Koneru; Mathew J. Kobe; Nivedita Jena; Guqin Shi; Mosaad S. Mohamed; Chenglong Li; Jacques J. Kessl; James R. Fuchs

Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5μM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs.


Structural Chemistry | 2013

Aromatic interaction profile to understand the molecular basis of raltegravir resistance

Tuniki Balaraju; Amit Kumar; Chandralata Bal; Debprasad Chattopadhyay; Nivedita Jena; Naresh C. Bal; Ashoke Sharon


Molecular BioSystems | 2013

Identification of calcium binding sites on calsequestrin 1 and their implications for polymerization

Amit Kumar; Harapriya Chakravarty; Naresh C. Bal; Tuniki Balaraju; Nivedita Jena; Gauri Misra; Chandralata Bal; Enrico Pieroni; Muthu Periasamy; Ashoke Sharon

Collaboration


Dive into the Nivedita Jena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashoke Sharon

Birla Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Feng

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Tuniki Balaraju

Birla Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandralata Bal

Birla Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge