Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niyaz Ahmad is active.

Publication


Featured researches published by Niyaz Ahmad.


Cellular Immunology | 2013

Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis

Sadiq Umar; Abu Hasnath Md. Golam Sarwar; Khalid Umar; Niyaz Ahmad; Mir Sajad; Sayeed Ahmad; Chandra Kant Katiyar; Haider A. Khan

OBJECTIVES Piperine, a main component of Piper species, is a plant alkaloid with a long history of medical use in a variety of inflammatory disorders like rheumatoid arthritis. Due to side effects in current treatment modalities of rheumatoid arthritis, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. The aim of this work was to evaluate the anti-inflammatory and antiarthritic effects of piperine. METHODS Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. Piperine was administered at a dose of 100mgkg(-1) and indomethacin at 1mgkg(-1) body weight once daily for 21days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, Catalase, SOD and NO), inflammatory mediators (IL-1β, TNF-α, IL-10 and PGE2) and histological studies in joints. RESULTS Piperine was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, Catalase, SOD and NO) studied. Oral administration of piperine resulted in significantly reduced the levels of pro-inflammatory mediators (IL-1β, TNF-α and PGE2) and increased level of IL-10. The protective effects of piperine against RA were also evident from the decrease in arthritis scoring and bone histology. CONCLUSIONS In conclusion, the fact that piperine alter a number of factors known to be involved in RA pathogenesis indicates that piperine can be used similar to indomethacin as a safe and effective therapy for CIA and may be useful in the treatment of rheumatoid arthritis.


Phytomedicine | 2014

Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis.

Sadiq Umar; Khalid Umar; Abu Hasnath Md. Golam Sarwar; Altaf Khan; Niyaz Ahmad; Sayeed Ahmad; Chandra Kant Katiyar; Syed Akhtar Husain; Haider A. Khan

Rheumatoid arthritis (RA) is a chronic inflammatory disease which leads to destruction of joints. Current treatment modalities for RA either produce symptomatic relief (NSAIDs) or modify the disease process (DMARDs). Though effective, their use is also limited by their side effects. As a result, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. Our aim was to evaluate the antioxidant and antiarthritic activity of Boswellia serrata gum resin extract (BSE) in collagen induced arthritis. Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. BSE was administered at doses of 100 and 200mg/kg body weight once daily for 21 days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE2), and histological studies in joints. BSE was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of BSE resulted in significantly reduced levels of inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE2), and increased level of IL-10. The protective effects of BSE against RA were also evident from the decrease in arthritis scoring and bone histology. The abilities to inhibit proinflammatory cytokines and modulation of antioxidant status suggest that the protective effect of Boswellia serrata extract on arthritis in rats might be mediated via the modulation of immune system.


Drug Delivery | 2014

PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model

Niyaz Ahmad; Iqbal Ahmad; Sadiq Umar; Zeenat Iqbal; Farhan Jalees Ahmad

Abstract Stroke is a one of the leading causes of disease and deaths worldwide, which causes irreversible deterioration of the central nervous system. Curcuminoids are reported to have a potential role in the amelioration of cerebral ischemia but they exhibit low serum and tissue levels due to low solubility and poor absorption. Curcumin (CUR), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)-loaded PNIPAM nanoparticles (NPs) were prepared by free radical polymerization and characterized for particles size, entrapment efficiency, zeta potential, in vitro release and ex vivo permeation study. Optimized CUR, DMC and BDMC-loaded NPs had the mean size of 92.46 ± 2.8, 91.23 ± 4.2 and 94.28 ± 1.91 nm; zeta potential of −16.2 ± 1.42, −15.6 ± 1.33 and −16.6 ± 1.21 mV; loading capacity of 39.31 ± 3.7, 38.91 ± 3.6 and 40.61 ± 3.6% and entrapment efficiency of 84.63 ± 4.2, 84.71 ± 3.99 and 85.73 ± 4.31%, respectively. Ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectroscopy based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency and brain drug-targeting potential studies post-intranasal (i.n.) administration which showed enhanced bioavailability of curcuminoids in brain as compared to intravenous administration. Improved neurobehavioural activity (locomotor and grip strength) and reduced cytokines levels (TNF-α and IL-1β) was observed in middle cerebral artery occlusion induced cerebral ischemic rats after i.n. administration of curcuminoids NPs. Finally, the toxicity study was performed which revealed safe nature of developed NPs.


International Journal of Biological Macromolecules | 2016

Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia

Niyaz Ahmad; Rizwan Ahmad; Aftab Alam; Zeenat Iqbal; Farhan Jalees Ahmad

Stroke is an important cause of deaths worldwide, resulting in an irreversible deterioration of the central nervous system. Finally, production of more free radicals. Therefore, Thymoquinone is having antioxidant property and reported to have a potential role in the amelioration of cerebral ischemia but due to low solubility and poor absorption; they exhibit low serum and tissue levels. Present work aims to prepare nanoemulsions in order enhance the bioavailability of drug and hence evaluate the drug targeting in brain via non-invasive nasal route administration. Thymoquinone Mucoadhesive Nanoemulsion (TMNE) was prepared by ionic gelation method; characterized for particles size, entrapment efficiency, zeta potential, and ex vivo permeation study. Optimized TMNE ended up with a mean globule size 94.8±6.61nm; zeta potential -13.5±1.01mV; drug content 99.86±0.35% and viscosity 110±12cp. Ultra Performance Liquid Chromatography-Photodiode Array (UPLC-PDA) based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency (628.5786±44.79%) and brain drug-targeting potential (89.97±2.94%) studies via post intranasal administration which revealed enhanced bioavailability of TQ in brain as compared to intravenous administration. Improved neurobehavioural activity (locomotor and grip strength) was observed in middle cerebral artery occlusion induced cerebral ischemic rats after i.n. administration of TMNE.


International Journal of Biological Macromolecules | 2016

Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia.

Niyaz Ahmad; Rizwan Ahmad; Atta Abbas Naqvi; Aftab Alam; Mohammad Ashafaq; Zeenat Iqbal; Farhan Jalees Ahmad

OBJECTIVE Rutin, a potent antioxidant, has been reported to reduce the risk of ischemic disease. Our study aims to prepare rutin-encapsulated-chitosan nanoparticles (RUT-CS-NPs) via ionic gelation method and determine its results, based on different parameters i.e. surface morphology characterization, in-vitro or ex-vivo release, dynamic light scattering and differential scanning calorimetry (DSC), for treating cerebral ischemia. METHODS UPLC-ESI-Q-TOF-MS/MS was used to evaluate the optimized RT-CS-NPs1 for brain-drug uptake as well as to follow-up the pharmacokinetics, bio-distrbution, brain-targeting efficiency and potential after intranasal administration (i.n.). KEY FINDINGS A particle size of <100nm for the formulation, significantly affected by drug:CS ratio, and entrapment efficiency and loading capacity of 84.98%±4.18% and 39.48%±3.16%, respectively were observed for RUT. Pharmacokinetics, bio-distribution, brain-targeting efficiency (1443.48±39.39%) and brain drug-targeting potential (93.00±5.69%) showed enhanced bioavailability for RUT in brain as compared to intravenous administration. In addition; improved neurobehavioral activity, histopathology and reduced infarction volume effects were observed in middle cerebral artery occlusion (MCAO) induced cerebral ischemic rats model after i.n. administration of RUT-CS-NPs. CONCLUSION A significant role of mucoadhesive-RT-CS-NPs1 as observed after high targeting potential and efficiency of the formulation prove; RUT-CS-NPs are more effectively accessed and target easily the brain.


Drug Development and Industrial Pharmacy | 2011

Role of humic acid on oral drug delivery of an antiepileptic drug

Mohd. Aamir Mirza; Suraj Prakash Agarwal; Md. Akhlaquer Rahman; Abdur Rauf; Niyaz Ahmad; Aftab Alam; Zeenat Iqbal

Context: Humic acid (HA) is omnipresent in natural organic matter that is a macromolecular, negatively charged polyelectrolyte that contains a hydrophobic core. It is also present in a significant amount in Shilajit (used frequently in traditional medicines), which is used in this study as a source of extraction. HA is evaluated for the oral drug delivery of carbamazepine (CBZ). Objective: HA is used in this study to increase the dissolution, intestinal permeation, and pharmacodynamic response of CBZ (bio pharmaceutics classification system (BCS) II) by the technique of complexation and other related mechanism reported with humic substances. Methods: Different complexation techniques were explored in this study for the entrapment of CBZ, which was authenticated by molecular modeling and conformational analysis. These were further characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Solubility analysis and dissolution release profile were carried out to access the in vitro parameters. For ex vivo studies, rat gut intestinal permeability was done. And finally pharmacodynamic evaluation (maximal electroshock method) was carried out for optimized complexes. Results: Molecular modeling approach and instrumental analysis (DSC, XRD, and FT-IR) confirmed the entrapment of CBZ inside the complexing agent. Increased solubility (∼1742%), sustained release (∼78%), better permeability (∼3.5 times), and enhanced pharmacodynamic responses conferred the best to 1:2 freeze dried (FD) and then 1:2 kneading (KD) complexes compared with pure CBZ. Conclusion: Now it could be concluded that HA may be tried as a complexing agent for antiepileptic drug and other classes of low water-soluble drug.


Drug Testing and Analysis | 2014

Quantification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin in rodent brain by UHPLC/ESI-Q-TOF-MS/MS after intra-nasal administration of curcuminoids loaded PNIPAM nanoparticles

Niyaz Ahmad; Musarrat H. Warsi; Zeenat Iqbal; Farhan Jalees Ahmad

An ultra high performance liquid chromatography-electrospray ionization-synapt mass spectrometric method (UHPLC/ESI-QTOF-MS/MS) for the analysis of curcumin (Cur), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) in Wistar rat brain homogenate was developed and validated. The chromatographic separation was achieved on a Waters ACQUITY UPLC™ BEH C18 (2.1mm × 100 mm; 1.7μm) column using isocratic mobile phase, consisting of acetonitrile: 10mM ammonium formate: formic acid (90:10:0.05v/v/v), at a flow rate of 0.2 ml min(-1) . The transitions occurred at m/z 367.0694/217.0598, 337.0717/173.0910, 307.0760/187.0844 for Cur, DMC, BDMC and m/z 307.0344/229.0677 for the IS (Nimesulide) respectively. The recovery of the analytes from Wistar rat brain homogenate was optimized using liquid-liquid extraction technique (LLE) in (ethyl acetate: chloform) mixture. The total run time was 3.0 min and the elution of Cur, DMC, BDMC occurred at 1.6, 1.75, 1.70 min, and for the IS 1.87 min, respectively. The linear dynamic range was established over the concentration range of 1.00 ng mL(-1) to 1000.0 ng mL(-1) (r(2) ; 0.9909 ± 0.0011, 0.9911 ± 0.003, and 0.9919 ± 0.0013) for Cur, DMC, and BDMC, respectively. The intra and inter-assay accuracy in terms of % CV for Cur, DMC, and BDMC was in the range 0.47-2.20, 0.47-1.65, and0.44-2.70, respectively. The lower limit of detection (LOD) and quantitation (LOQ) for Cur, DMC, and BDMC were 0.46, 0.05, 0.16 ng mL(-1) and 0.153, 0.015, 0.052 ng mL(-1) , respectively. Analytes were stable and the method proved to be accurate (recovery, >85%), specific and was applied to evaluate the Cur, DMC, BDMC loaded PNIPAM NPs as vehicles for nose to brain drug delivery.


Results in Pharma Sciences | 2011

Comparative evaluation of humic substances in oral drug delivery.

Mohd. Aamir Mirza; Niyaz Ahmad; Suraj Prakash Agarwal; Danish Mahmood; M. Khalid Anwer; Zeenat Iqbal

Major and biologically most explored components of natural organic matter (NOM) are humic acid (HA) and fulvic acid (FA). We have explored rock shilajit as a source of NOM. On the other hand carbamazepine (CBZ) is a well known anticonvulsant drug and has a limited accessibility to brain. Bioavailability and pharmacokinetic profiles of CBZ have been improved by complexation and different techniques also. Present study has assessed the comparative abilities of FA and HA as complexing agent for CBZ in order to enhance pharmacokinetic profile of CBZ and accessibility to the brain. These two complexing agents have been compared on various indices such as their abilities to cause complexation and enhance solubility, permeability and dissolution. The present study also compared pharmacodynamic and biochemical profiles after oral administration of complexes. With the help of various pharmaceutical techniques such as freeze drying, physical mixture, kneading and solvent evaporation, two molar ratios (1:1 and 1:2) were selected for complexation and evaluated for conformational analysis (molecular modeling). Complex formed was further characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy and X-ray diffraction (XRD). Preclinical study on rodents with CBZ-HA and CBZ-FA has yielded appreciable results in terms of their anticonvulsant and antioxidants activities. However, CBZ-HA (1:2) demonstrated better result than any other complex.


Jpc-journal of Planar Chromatography-modern Tlc | 2010

Chromatographic analysis of trans and cis -Citral in lemongrass oil and in a topical phytonanocosmeceutical formulation, and validation of the method

Md. Faiyazuddin; Javed Ali; Sayeed Ahmad; Niyaz Ahmad; Juber Akhtar; Sanjula Baboota

For decades the antimicrobial potential of essential oils has been extensively studied, and aromatic oils are the subject of intensive research in the skin care industry for use in cosmetics [1–10]. Among the micro-organisms tested Propionibacterium acnes is highly susceptible to antimicrobial herb extracts and volatile oils [11–21]. Acne lesions develop in pilosebaceous units infected by P. acnes leading to blackheads, whiteheads, and development of pustules [1, 12–16, 18, 20, 21].


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.

Mohammed Anwar; Iqbal Ahmad; Musarrat H. Warsi; Sharmistha Mohapatra; Niyaz Ahmad; Sohail Akhter; Asgar Ali; Farhan Jalees Ahmad

The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR.

Collaboration


Dive into the Niyaz Ahmad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge