Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nizar N. Jarjour is active.

Publication


Featured researches published by Nizar N. Jarjour.


american thoracic society international conference | 2009

Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program

Wendy C. Moore; Deborah A. Meyers; Sally E. Wenzel; W. Gerald Teague; H. Li; Xingnan Li; Ralph B. D'Agostino; Mario Castro; Douglas Curran-Everett; Anne M. Fitzpatrick; Benjamin Gaston; Nizar N. Jarjour; Ronald L. Sorkness; William J. Calhoun; Kian Fan Chung; Suzy Comhair; Raed A. Dweik; Elliot Israel; Stephen P. Peters; William W. Busse; Serpil C. Erzurum; Eugene R. Bleecker

RATIONALE The Severe Asthma Research Program cohort includes subjects with persistent asthma who have undergone detailed phenotypic characterization. Previous univariate methods compared features of mild, moderate, and severe asthma. OBJECTIVES To identify novel asthma phenotypes using an unsupervised hierarchical cluster analysis. METHODS Reduction of the initial 628 variables to 34 core variables was achieved by elimination of redundant data and transformation of categorical variables into ranked ordinal composite variables. Cluster analysis was performed on 726 subjects. MEASUREMENTS AND MAIN RESULTS Five groups were identified. Subjects in Cluster 1 (n = 110) have early onset atopic asthma with normal lung function treated with two or fewer controller medications (82%) and minimal health care utilization. Cluster 2 (n = 321) consists of subjects with early-onset atopic asthma and preserved lung function but increased medication requirements (29% on three or more medications) and health care utilization. Cluster 3 (n = 59) is a unique group of mostly older obese women with late-onset nonatopic asthma, moderate reductions in FEV(1), and frequent oral corticosteroid use to manage exacerbations. Subjects in Clusters 4 (n = 120) and 5 (n = 116) have severe airflow obstruction with bronchodilator responsiveness but differ in to their ability to attain normal lung function, age of asthma onset, atopic status, and use of oral corticosteroids. CONCLUSIONS Five distinct clinical phenotypes of asthma have been identified using unsupervised hierarchical cluster analysis. All clusters contain subjects who meet the American Thoracic Society definition of severe asthma, which supports clinical heterogeneity in asthma and the need for new approaches for the classification of disease severity in asthma.


American Journal of Respiratory and Critical Care Medicine | 2010

Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial.

Mario Castro; Adalberto S. Rubin; Michel Laviolette; Jussara Fiterman; Marina A. Lima; Pallav L. Shah; Elie Fiss; Ronald Olivenstein; Neil C. Thomson; Robert Niven; Ian D. Pavord; Michael Simoff; David R. Duhamel; Charlene McEvoy; Richard G. Barbers; Nicolaas H T Ten Hacken; Michael E. Wechsler; Mark Holmes; Martin J. Phillips; Serpil C. Erzurum; William Lunn; Elliot Israel; Nizar N. Jarjour; Monica Kraft; Narinder S. Shargill; John Quiring; Scott M. Berry; Gerard Cox

RATIONALE Bronchial thermoplasty (BT) is a bronchoscopic procedure in which controlled thermal energy is applied to the airway wall to decrease smooth muscle. OBJECTIVES To evaluate the effectiveness and safety of BT versus a sham procedure in subjects with severe asthma who remain symptomatic despite treatment with high-dose inhaled corticosteroids and long-acting beta(2)-agonists. METHODS A total of 288 adult subjects (Intent-to-Treat [ITT]) randomized to BT or sham control underwent three bronchoscopy procedures. Primary outcome was the difference in Asthma Quality of Life Questionnaire (AQLQ) scores from baseline to average of 6, 9, and 12 months (integrated AQLQ). Adverse events and health care use were collected to assess safety. Statistical design and analysis of the primary endpoint was Bayesian. Target posterior probability of superiority (PPS) of BT over sham was 95%, except for the primary endpoint (96.4%). MEASUREMENTS AND MAIN RESULTS The improvement from baseline in the integrated AQLQ score was superior in the BT group compared with sham (BT, 1.35 +/- 1.10; sham, 1.16 +/- 1.23 [PPS, 96.0% ITT and 97.9% per protocol]). Seventy-nine percent of BT and 64% of sham subjects achieved changes in AQLQ of 0.5 or greater (PPS, 99.6%). Six percent more BT subjects were hospitalized in the treatment period (up to 6 wk after BT). In the posttreatment period (6-52 wk after BT), the BT group experienced fewer severe exacerbations, emergency department (ED) visits, and days missed from work/school compared with the sham group (PPS, 95.5, 99.9, and 99.3%, respectively). CONCLUSIONS BT in subjects with severe asthma improves asthma-specific quality of life with a reduction in severe exacerbations and healthcare use in the posttreatment period. Clinical trial registered with www.clinialtrials.gov (NCT00231114).


The New England Journal of Medicine | 2010

Tiotropium Bromide Step-Up Therapy for Adults with Uncontrolled Asthma

Stephen P. Peters; Susan J. Kunselman; Nikolina Icitovic; Wendy C. Moore; Rodolfo M. Pascual; Bill T. Ameredes; Homer A. Boushey; William J. Calhoun; Mario Castro; Reuben M. Cherniack; Timothy J. Craig; Loren C. Denlinger; Linda Engle; Emily DiMango; John V. Fahy; Elliot Israel; Nizar N. Jarjour; Shamsah Kazani; Monica Kraft; Stephen C. Lazarus; Robert F. Lemanske; Njira L Lugogo; Richard J. Martin; Deborah A. Meyers; Joe W. Ramsdell; Christine A. Sorkness; E. Rand Sutherland; Stanley J. Szefler; Stephen I. Wasserman; Michael J. Walter

BACKGROUND Long-acting beta-agonist (LABA) therapy improves symptoms in patients whose asthma is poorly controlled by an inhaled glucocorticoid alone. Alternative treatments for adults with uncontrolled asthma are needed. METHODS In a three-way, double-blind, triple-dummy crossover trial involving 210 patients with asthma, we evaluated the addition of tiotropium bromide (a long-acting anticholinergic agent approved for the treatment of chronic obstructive pulmonary disease but not asthma) to an inhaled glucocorticoid, as compared with a doubling of the dose of the inhaled glucocorticoid (primary superiority comparison) or the addition of the LABA salmeterol (secondary noninferiority comparison). RESULTS The use of tiotropium resulted in a superior primary outcome, as compared with a doubling of the dose of an inhaled glucocorticoid, as assessed by measuring the morning peak expiratory flow (PEF), with a mean difference of 25.8 liters per minute (P<0.001) and superiority in most secondary outcomes, including evening PEF, with a difference of 35.3 liters per minute (P<0.001); the proportion of asthma-control days, with a difference of 0.079 (P=0.01); the forced expiratory volume in 1 second (FEV1) before bronchodilation, with a difference of 0.10 liters (P=0.004); and daily symptom scores, with a difference of -0.11 points (P<0.001). The addition of tiotropium was also noninferior to the addition of salmeterol for all assessed outcomes and increased the prebronchodilator FEV1 more than did salmeterol, with a difference of 0.11 liters (P=0.003). CONCLUSIONS When added to an inhaled glucocorticoid, tiotropium improved symptoms and lung function in patients with inadequately controlled asthma. Its effects appeared to be equivalent to those with the addition of salmeterol. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT00565266.).


The Lancet | 2009

Effect of β2-adrenergic receptor polymorphism on response to longacting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial

Michael E. Wechsler; Susan J. Kunselman; Vernon M. Chinchilli; Eugene R. Bleecker; Homer A. Boushey; William J. Calhoun; Bill T. Ameredes; Mario Castro; Timothy J. Craig; Loren C. Denlinger; John V. Fahy; Nizar N. Jarjour; Shamsah Kazani; Sophia Kim; Monica Kraft; Stephen C. Lazarus; Robert F. Lemanske; Amy Markezich; Richard J. Martin; Perdita Permaul; Stephen P. Peters; Joe W. Ramsdell; Christine A. Sorkness; E. Rand Sutherland; Stanley J. Szefler; Michael J. Walter; Stephen I. Wasserman; Elliot Israel

BACKGROUND Some studies suggest that patients with asthma who are homozygous for arginine at the 16th amino acid position of the beta2-adrenergic receptor (B16 Arg/Arg) benefit less from treatment with longacting beta2 agonists and inhaled corticosteroids than do those homozygous for glycine (B16 Gly/Gly). We investigated whether there is a genotype-specific response to treatment with a longacting beta2 agonist in combination with inhaled corticosteroid. METHODS In this multicentre, randomised, double-blind, placebo-controlled trial, adult patients with moderate asthma were enrolled in pairs matched for forced expiratory volume in 1 s and ethnic origin, according to whether they had the B16 Arg/Arg (n=42) or B16 Gly/Gly (n=45) genotype. Individuals in a matched pair were randomly assigned by computer-generated randomisation sequence to receive inhaled longacting beta2 agonist (salmeterol 50 microg twice a day) or placebo given in a double-blind, crossover design for two 18-week periods. Open-label inhaled corticosteroid (hydrofluoroalkane beclometasone 240 microg twice a day) was given to all participants during the treatment periods. The primary endpoint was morning peak expiratory flow (PEF). Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00200967. FINDINGS After 18 weeks of treatment, mean morning PEF in Arg/Arg participants was 21.4 L/min (95% CI 11.8-31.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). In Gly/Gly participants, morning PEF was 21.5 L/min (11.0-32.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). The improvement in PEF did not differ between genotypes (difference [Arg/Arg-Gly/Gly] -0.1, -14.4 to 14.2; p=0.99). In Gly/Gly participants, methacholine PC20 (20% reduction in forced expiratory volume in 1 s; a prespecified secondary outcome) was 2.4 times higher when participants were assigned to salmeterol than when assigned to placebo (p<0.0001). Responsiveness to methacholine did not differ between salmeterol and placebo in Arg/Arg participants (p=0.87). The 2.5 times higher genotype-specific difference in responsiveness to methacholine was significant (1.32 doubling dose difference between genotypes, 0.43-2.21, p=0.0038). Seven Arg/Arg participants (placebo, n=5; salmeterol, n=2) and six Gly/Gly participants (placebo, n=3; salmeterol, n=3) had an asthma exacerbation. Five serious adverse events were reported, one each during the pre-match and run-in phases on open-label inhaled corticosteroid, two during double-blind treatment with salmeterol/inhaled corticosteroid, and one during double-blind treatment with placebo/inhaled corticosteroid. None of the serious events was asthma-related or related to study drugs or procedures. INTERPRETATION In asthma patients with B16 Arg/Arg and B16 Gly/Gly genotypes, combination treatment with salmeterol and inhaled corticosteroid improved airway function when compared with inhaled corticosteroid therapy alone. These findings suggest that patients should continue to be treated with longacting beta2 agonists plus moderate-dose inhaled corticosteroids irrespective of B16 genotype. Further investigation is needed to establish the importance of the genotype-specific difference in responsiveness to methacholine. FUNDING National Institutes of Health.


American Journal of Respiratory and Critical Care Medicine | 2010

Use of Exhaled Nitric Oxide Measurement to Identify a Reactive, at-Risk Phenotype among Patients with Asthma

Raed A. Dweik; Ronald L. Sorkness; Sally Wenzel; Jeffrey P. Hammel; Douglas Curran-Everett; Suzy Comhair; Eugene R. Bleecker; William W. Busse; William J. Calhoun; Mario Castro; Kian Fan Chung; Elliot Israel; Nizar N. Jarjour; Wendy C. Moore; Stephen Peters; Gerald Teague; Benjamin Gaston; Serpil C. Erzurum

RATIONALE Exhaled nitric oxide (Fe(NO)) is a biomarker of airway inflammation in mild to moderate asthma. However, whether Fe(NO) levels are informative regarding airway inflammation in patients with severe asthma, who are refractory to conventional treatment, is unknown. Here, we hypothesized that classification of severe asthma based on airway inflammation as defined by Fe(NO) levels would identify a more reactive, at-risk asthma phenotype. METHODS Fe(NO) and major features of asthma, including airway inflammation, airflow limitation, hyperinflation, hyperresponsiveness, and atopy, were determined in 446 individuals with various degrees of asthma severity (175 severe, 271 non-severe) and 49 healthy subjects enrolled in the Severe Asthma Research Program. MEASUREMENTS AND MAIN RESULTS Fe(NO) levels were similar among patients with severe and non-severe asthma. The proportion of individuals with high Fe(NO) levels (>35 ppb) was the same (40%) among groups despite greater corticosteroid therapy in severe asthma. All patients with asthma and high Fe(NO) had more airway reactivity (maximal reversal in response to bronchodilator administration and by methacholine challenge), more evidence of allergic airway inflammation (sputum eosinophils), more evidence of atopy (positive skin tests, higher serum IgE and blood eosinophils), and more hyperinflation, but decreased awareness of their symptoms. High Fe(NO) identified those patients with severe asthma characterized by the greatest airflow obstruction and hyperinflation and most frequent use of emergency care. CONCLUSIONS Grouping of asthma by Fe(NO) provides an independent classification of asthma severity, and among patients with severe asthma identifies the most reactive and worrisome asthma phenotype.


American Journal of Respiratory and Critical Care Medicine | 2008

Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma.

Anna Planaguma; Shamsah Kazani; Gautham Marigowda; Oliver Haworth; Thomas J. Mariani; Elliot Israel; Eugene R. Bleecker; Douglas Curran-Everett; Serpil C. Erzurum; William J. Calhoun; Mario Castro; Kian Fan Chung; Benjamin Gaston; Nizar N. Jarjour; William W. Busse; Sally E. Wenzel; Bruce D. Levy

RATIONALE Airway inflammation is common in severe asthma despite antiinflammatory therapy with corticosteroids. Lipoxin A(4) (LXA(4)) is an arachidonic acid-derived mediator that serves as an agonist for resolution of inflammation. OBJECTIVES Airway levels of LXA(4), as well as the expression of lipoxin biosynthetic genes and receptors, in severe asthma. METHODS Samples of bronchoalveolar lavage fluid were obtained from subjects with asthma and levels of LXA(4) and related eicosanoids were measured. Expression of lipoxin biosynthetic genes was determined in whole blood, bronchoalveolar lavage cells, and endobronchial biopsies by quantitative polymerase chain reaction, and leukocyte LXA(4) receptors were monitored by flow cytometry. MEASUREMENTS AND MAIN RESULTS Individuals with severe asthma had significantly less LXA(4) in bronchoalveolar lavage fluids (11.2 +/- 2.1 pg/ml) than did subjects with nonsevere asthma (150.1 +/- 38.5 pg/ml; P < 0.05). In contrast, levels of cysteinyl leukotrienes were increased in both asthma cohorts compared with healthy individuals. In severe asthma, 15-lipoxygenase-1 mean expression was decreased fivefold in bronchoalveolar lavage cells. In contrast, 15-lipoxgenase-1 was increased threefold in endobronchial biopsies, but expression of both 5-lipoxygenase and 15-lipoxygenase-2 in these samples was decreased. Cyclooxygenase-2 expression was decreased in all anatomic compartments sampled in severe asthma. Moreover, LXA(4) receptor gene and protein expression were significantly decreased in severe asthma peripheral blood granulocytes. CONCLUSIONS Mechanisms underlying pathological airway responses in severe asthma include lipoxin underproduction with decreased expression of lipoxin biosynthetic enzymes and receptors. Together, these results indicate that severe asthma is characterized, in part, by defective lipoxin counterregulatory signaling circuits.


Journal of Immunology | 2002

Decreased Expression of Membrane IL-5 Receptor α on Human Eosinophils: I. Loss of Membrane IL-5 Receptor α on Airway Eosinophils and Increased Soluble IL-5 Receptor α in the Airway After Allergen Challenge

Lin Ying Liu; Julie B. Sedgwick; Mary Ellen Bates; Rose F. Vrtis; James E. Gern; H. Kita; Nizar N. Jarjour; William W. Busse; Elizabeth A. Kelly

IL-5 is a key cytokine for eosinophil maturation, recruitment, activation, and possibly the development of inflammation in asthma. High concentrations of IL-5 are present in the airway after Ag challenge, but the responsiveness of airway eosinophils to IL-5 is not well characterized. The objectives of this study were to establish, following airway Ag challenge: 1) the expression of membrane (m)IL-5Rα on bronchoalveolar lavage (BAL) eosinophils; 2) the responsiveness of these cells to exogenous IL-5; and 3) the presence of soluble (s)IL-5Rα in BAL fluid. To accomplish these goals, blood and BAL eosinophils were obtained from atopic subjects 48 h after segmental bronchoprovocation with Ag. There was a striking reduction in mIL-5Rα on airway eosinophils compared with circulating cells. Furthermore, sIL-5Rα concentrations were elevated in BAL fluid, but steady state levels of sIL-5Rα mRNA were not increased in BAL compared with blood eosinophils. Finally, BAL eosinophils were refractory to IL-5 for ex vivo degranulation, suggesting that the reduction in mIL-5Rα on BAL eosinophils may regulate IL-5-mediated eosinophil functions. Together, the loss of mIL-5Rα, the presence of sIL-5Rα, and the blunted functional response (degranulation) of eosinophils to IL-5 suggest that when eosinophils are recruited to the airway, regulation of their functions becomes IL-5 independent. These observations provide a potential explanation for the inability of anti-IL-5 therapy to suppress airway hyperresponsiveness to inhaled Ag, despite a reduction in eosinophil recruitment.


American Journal of Respiratory and Critical Care Medicine | 2012

Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program.

Nizar N. Jarjour; Serpil C. Erzurum; Eugene R. Bleecker; William J. Calhoun; Mario Castro; Suzy Comhair; Kian Fan Chung; Douglas Curran-Everett; Raed A. Dweik; Sean B. Fain; Anne M. Fitzpatrick; Benjamin Gaston; Elliot Israel; Annette T. Hastie; Eric A. Hoffman; Fernando Holguin; Bruce D. Levy; Deborah A. Meyers; Wendy C. Moore; Stephen P. Peters; Ronald L. Sorkness; W. Gerald Teague; Sally E. Wenzel; William W. Busse

The National Heart, Lung, and Blood Institute Severe Asthma Research Program (SARP) has characterized over the past 10 years 1,644 patients with asthma, including 583 individuals with severe asthma. SARP collaboration has led to a rapid recruitment of subjects and efficient sharing of samples among participating sites to conduct independent mechanistic investigations of severe asthma. Enrolled SARP subjects underwent detailed clinical, physiologic, genomic, and radiological evaluations. In addition, SARP investigators developed safe procedures for bronchoscopy in participants with asthma, including those with severe disease. SARP studies revealed that severe asthma is a heterogeneous disease with varying molecular, biochemical, and cellular inflammatory features and unique structure-function abnormalities. Priorities for future studies include recruitment of a larger number of subjects with severe asthma, including children, to allow further characterization of anatomic, physiologic, biochemical, and genetic factors related to severe disease in a longitudinal assessment to identify factors that modulate the natural history of severe asthma and provide mechanistic rationale for management strategies.


Nature Medicine | 2011

Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C

Yury A. Bochkov; Ann C. Palmenberg; Wai-Ming Lee; Jennifer A. Rathe; Svetlana P. Amineva; Xin Sun; Thomas R. Pasic; Nizar N. Jarjour; Stephen B. Liggett; James E. Gern

A recently recognized human rhinovirus species C (HRV-C) is associated with up to half of HRV infections in young children. Here we propagated two HRV-C isolates ex vivo in organ culture of nasal epithelial cells, sequenced a new C15 isolate and developed the first, to our knowledge, reverse genetics system for HRV-C. Using contact points for the known HRV receptors, intercellular adhesion molecule-1 (ICAM-1) and low-density lipoprotein receptor (LDLR), inter- and intraspecies footprint analyses predicted a unique cell attachment site for HRV-Cs. Antibodies directed to binding sites for HRV-A and -B failed to inhibit HRV-C attachment, consistent with the alternative receptor footprint. HRV-A and HRV-B infected HeLa and WisL cells but HRV-C did not. However, HRV-C RNA synthesized in vitro and transfected into both cell types resulted in cytopathic effect and recovery of functional virus, indicating that the viral attachment mechanism is a primary distinguishing feature of HRV-C.


Current Opinion in Pulmonary Medicine | 2003

Role of matrix metalloproteinases in asthma

Elizabeth A. Kelly; Nizar N. Jarjour

Airway inflammation and remodeling are key features of asthma. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs) are thought to contribute to the pathogenesis of asthma via their influence on the function and migration of inflammatory cells as well as matrix deposition and degradation. TIMPs bind MMPs in a 1:1 fashion. Thus, an increase in the molar ratio of MMP/TIMP may favor tissue injury, while the reverse could be associated with increased fibrosis. MMP-9 is the predominant MMP in asthma, and its expression is enhanced when patients have spontaneous exacerbations or in response to local instillation of allergen in the airway. As acute inflammation resolves, MMP-9 levels return toward normal. Interestingly, corticosteroids downregulate MMP and enhance TIMPs. Even though it is clear that enhanced airway inflammation in asthma is associated with increased expression of MMPs, whether specific inhibitors of MMP could reduce airway injury and facilitate orderly healing in asthma is still unknown.

Collaboration


Dive into the Nizar N. Jarjour's collaboration.

Top Co-Authors

Avatar

William W. Busse

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Kelly

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mario Castro

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elliot Israel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loren C. Denlinger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Benjamin Gaston

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

William J. Calhoun

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge