Nm Nicole Hijnen
Eindhoven University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nm Nicole Hijnen.
Journal of Controlled Release | 2011
Mariska de Smet; Edwin Heijman; Sander Langereis; Nm Nicole Hijnen; Holger Grüll
Temperature-sensitive liposomes (TSLs) co-encapsulating doxorubicin and 250 mM [Gd(HPDO3A)(H₂O)] were evaluated for HIFU-mediated drug delivery under MR image guidance. In vitro studies showed simultaneous and quantitative release of the drug and the MRI contrast agent from the lumen of the TSLs at 42°C, while no leakage was observed over 1 h at 37°C. In a proof-of-concept study, local hyperthermia has been applied for 30 min in 9L rat tumors using a clinical MR-HIFU system. The local temperature-triggered release of [Gd(HPDO3A)(H₂O)] was monitored with interleaved T₁ mapping of the tumor tissue. A good correlation between the ΔR₁, the uptake of doxorubicin and the gadolinium concentration in the tumor was found, implying that the in vivo release of doxorubicin from TSLs can be probed in situ with the longitudinal relaxation time of the co-released MRI contrast agent.
Advanced Drug Delivery Reviews | 2014
Nm Nicole Hijnen; Sander Langereis; Holger Grüll
Magnetic resonance guided high-intensity focused ultrasound (MR-HIFU) is a versatile technology platform for noninvasive thermal therapies in oncology. Since MR-HIFU allows heating of deep-seated tissue to well-defined temperatures under MR image guidance, this novel technology has great potential for local heat-mediated drug delivery from temperature-sensitive liposomes (TSLs). In particular, MR provides the ability for image guidance of the drug delivery when an MRI contrast agent is co-encapsulated with the drug in the aqueous lumen of the liposomes. Monitoring of the tumor drug coverage offers possibilities for a personalized thermal treatment in oncology. This review focuses on MR-HIFU as a noninvasive technology platform, temperature-sensitive liposomal formulations for drug delivery and image-guided drug delivery, and the effect of HIFU-induced hyperthermia on the TSL and drug distribution. Finally, the opportunities and challenges of localized MR-HIFU-mediated drug delivery from temperature-sensitive liposomes in oncology are discussed.
Journal of Controlled Release | 2013
Mariska de Smet; Sander Langereis; Sandra M. van den Bosch; Katrin Bitter; Nm Nicole Hijnen; Edwin Heijman; Holger Grüll
The goal of this study was to investigate the blood kinetics and biodistribution of temperature-sensitive liposomes (TSLs) for MR image-guided drug delivery. The co-encapsulated doxorubicin and [Gd(HPDO3A)(H₂O)] as well as the ¹¹¹In-labeled liposomal carrier were quantified in blood and organs of tumor bearing rats. After TSL injection, mild hyperthermia (T=42 °C) was induced in the tumor using high intensity focused ultrasound under MR image-guidance (MR-HIFU). The biodistribution of the radiolabeled TSLs was investigated using SPECT/CT imaging, where the highest uptake of ¹¹¹In-labeled TSLs was observed in the spleen and liver. The MR-HIFU-treated tumors showed 4.4 times higher liposome uptake after 48 h in comparison with controls, while the doxorubicin concentration was increased by a factor of 7.9. These effects of HIFU-treatment are promising for applications in liposomal drug delivery to tumors.
International Journal of Hyperthermia | 2012
Nm Nicole Hijnen; Edwin Heijman; Max O. Köhler; Mika Petri Ylihautala; Arjan W. Simonetti; Holger Grüll
Purpose: We report on the design, performance, and specifications of a dedicated set‐up for the treatment of rats on a clinical magnetic resonance high intensity focused ultrasound (MR‐HIFU) system. Materials and methods: The small animal HIFU‐compatible 4‐channel MR receiver volume coil and animal support were designed as add‐on to a clinical 3T Philips Sonalleve MR‐HIFU system. Prolonged hyperthermia (T ≈ 42°C, 15 min) and thermal ablation (T = 65°C) was performed in vivo on subcutaneous rat tumours using 1.44 MHz acoustic frequency. The direct treatment effect was assessed with T2‐weighted imaging and dynamic contrast enhanced (DCE‐) MRI as well as histology. Results: The developed HIFU‐compatible coil provided an image quality that was comparable to conventional small animal volume coils (i.e. without acoustic window), and a SNR increase by a factor of 10 as compared to the coil set‐up used for clinical MR‐HIFU therapy. The use of an animal support minimised far field heating and allowed precise regulation of the animal body core temperature, which varied <1°C during treatment. Conclusions: The results demonstrated that, by using a designated set‐up, both controlled hyperthermia and thermal ablation treatment of malignant tumours in rodents can be performed on a clinical MR‐HIFU system. This approach provides all the advantages of clinical MR‐HIFU, such as volumetric heating, temperature feedback control and a clinical software interface for use in rodent treatment. The use of a clinical system moreover facilitates a rapid translation of the developed protocols into the clinic.
Investigative Radiology | 2013
Mariska de Smet; Nm Nicole Hijnen; Sander Langereis; Aaldert Jan Elevelt; Edwin Heijman; Ludwig Dubois; Ph Philippe Lambin; Holger Grüll
ObjectivesThe aim of this study was to investigate the intratumoral distribution of a temperature-sensitive liposomal carrier and its encapsulated compounds, doxorubicin, and a magnetic resonance (MR) imaging contrast agent after high-intensity focused ultrasound (HIFU)–mediated hyperthermia-induced local drug release. Materials and Methods111In-labeled temperature-sensitive liposomes encapsulating doxorubicin and [Gd(HPDO3A) (H2O)] were injected intravenously in the tail vein of rats (n = 12) bearing a subcutaneous rhabdomyosarcoma tumor on the hind leg. Immediately after the injection, local tumor hyperthermia (2 × 15 minutes) was applied using a clinical 3 T MR-HIFU system. Release of [Gd(HPDO3A)(H2O)] was studied in vivo by measuring the longitudinal relaxation rate R1 with MR imaging. The presence of the liposomal carriers and the intratumoral distribution of doxorubicin were imaged ex vivo with autoradiography and fluorescence microscopy, respectively, for 2 different time points after injection (90 minutes and 48 hours). ResultsIn hyperthermia-treated tumors, radiolabeled liposomes were distributed more homogeneously across the tumor than in the control tumors (coefficient of variationhyp, 90 min = 0.7 ± 0.2; coefficient of variationcntrl, 90 min = 1.1 ± 0.2). At 48 hours after injection, the liposomal accumulation in the tumor was enhanced in the hyperthermia group in comparison with the controls. A change in R1 was observed in the HIFU-treated tumors, suggesting release of the contrast agent. Fluorescence images showed perivascular doxorubicin in control tumors, whereas in the HIFU-treated tumors, the delivered drug was spread over a much larger area and also taken up by tumor cells at a larger distance from blood vessels. ConclusionsTreatment with HIFU hyperthermia not only improved the immediate drug delivery, bioavailability, and intratumoral distribution but also enhanced liposomal accumulation over time. The sum of these effects may have a significant contribution to the therapeutic outcome.
Journal of therapeutic ultrasound | 2013
Nm Nicole Hijnen; Aaldert Jan Elevelt; Jeroen A. Pikkemaat; Clemens Bos; Lambertus W. Bartels; Holger Grüll
BackgroundProton resonance frequency shift (PRFS) magnetic resonance (MR) thermometry exploits the local magnetic field changes induced by the temperature dependence of the electron screening constant of water protons. Any other local magnetic field changes will therefore translate into incorrect temperature readings and need to be considered accordingly. Here, we investigated the susceptibility changes induced by the inflow and presence of a paramagnetic MR contrast agent and their implications on PRFS thermometry.MethodsPhantom measurements were performed to demonstrate the effect of sudden gadopentetate dimeglumine (Gd-DTPA) inflow on the phase shift measured using a PRFS thermometry sequence on a clinical 3 T magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) system. By proton nuclear magnetic resonance spectroscopy, the temperature dependence of the Gd-DTPA susceptibility was measured, as well as the effect of liposomal encapsulation and release on the bulk magnetic susceptibility of Gd-DTPA. In vivo studies were carried out to measure the temperature error induced in a rat hind leg muscle upon intravenous Gd-DTPA injection.ResultsThe phantom study showed a significant phase shift inside the phantom of 0.6 ± 0.2 radians (mean ± standard deviation) upon Gd-DTPA injection (1.0 mM, clinically relevant amount). A Gd-DTPA-induced magnetic susceptibility shift of ΔχGd-DTPA = 0.109 ppm/mM was measured in a cylinder parallel to the main magnetic field at 37°C. The temperature dependence of the susceptibility shift showed dΔχGd-DTPA/dT = -0.00038 ± 0.00008 ppm/mM/°C. No additional susceptibility effect was measured upon Gd release from paramagnetic liposomes. In vivo, intravenous Gd-DTPA injection resulted in a perceived temperature change of 2.0°C ± 0.1°C at the center of the hind leg muscle.ConclusionsThe use of a paramagnetic MR contrast agent prior to MR-HIFU treatment may influence the accuracy of the PRFS MR thermometry. Depending on the treatment workflow, Gd-induced temperature errors ranging between -4°C and +3°C can be expected. Longer waiting time between contrast agent injection and treatment, as well as shortening the ablation duration by increasing the sonication power, will minimize the Gd influence. Compensation for the phase changes induced by the changing Gd presence is difficult as the magnetic field changes are arising nonlocally in the surroundings of the susceptibility change.
Investigative Radiology | 2013
Nm Nicole Hijnen; Aaldert Jan Elevelt; Holger Grüll
ObjectivesThe purpose of this study was to investigate the use of Gd-DTPA shortly before magnetic resonance guided high-intensity focused ultrasound MR-HIFU thermal ablation therapy with respect to dissociation, trapping, and long-term deposition of gadolinium (Gd) in the body. Materials and MethodsMagnetic resonance–HIFU ablation treatment was conducted in vivo on both rat muscle and subcutaneous tumor (9L glioma) using a clinical 3T MR-HIFU system equipped with a small-animal coil setup. A human equivalent dose of gadopentetate dimeglumine (Gd-DTPA) (0.6 mmol/kg of body weight) was injected via a tail vein catheter just before ablation (⩽5 minutes). Potential trapping of the contrast agent in the ablated area was visualized through the acquisition of R1 maps of the target location before and after therapy. The animals were sacrificed 2 hours or 14 days after the injection (n = 4 per group, a total of 40 animals). Subsequently, the Gd content in the tissue and carcass was determined using inductively coupled plasma techniques to investigate the biodistribution. ResultsTemporal trapping of Gd-DTPA in the coagulated tissue was observed on the R1 maps acquired within 2 hours after the ablation, an effect confirmed by the inductively coupled plasma analysis (3 times more Gd3+ was found in the treated muscle volume than in the control muscle tissue). Two weeks after the therapy, the absolute amount of Gd3+ present in the coagulated tissue was low compared with the amount present in the kidneys 14 days after the injection (ablated muscle, 0.009% ± 0.002% ID/g; kidney, 0.144% ± 0.165% ID/g). There was no significant increase in Gd content in the principal target organs for translocated Gd3+ions (liver, spleen, and bone) or in the entire carcasses between the HIFU- and sham-treated animals. Finally, an in vivo relaxivity of 4.6 mmol−1s−1 was found in the HIFU-ablated volume, indicating intact Gd-DTPA. ConclusionsMagnetic resonance–HIFU treatment does not induce the dissociation of Gd-DTPA. In small-tissue volumes, no significant effect on the long-term in vivo Gd retention was found. However, care must be taken with the use of proton resonance frequency shift–based MR thermometry for HIFU guidance in combination with Gd3+ because the susceptibility artifact induced by Gd3+ can severely influence treatment outcome.
Contrast Media & Molecular Imaging | 2012
Nm Nicole Hijnen; Anke de Vries; Klaas Nicolay; Holger Grüll
The synthesis, design and subsequent pre-clinical testing of new molecular imaging tracers are topic of extensive research in healthcare. Quantitative dual-isotope SPECT imaging is proposed here as a tool in the design and validation of such tracers, as it can be used to quantify and compare the biodistribution of a specific ligand and its nonspecific control ligand, labeled with two different radionuclides, in the same animal. Since the biodistribution results are not blurred by experimental or physiological inter-animal variations, this approach allows determination of the ligands net targeting effect. However, dual-isotope quantification is complicated by crosstalk between the two radionuclides used and the radionuclides should not influence the biodistribution of the tracer. Here, we developed a quantitative dual-isotope SPECT protocol using combined (111)Indium and (177)Lutetium and tested this tool for a well-known angiogenesis-specific ligand (cRGD peptide) in comparison to a potential nonspecific control (cRAD peptide). Dual-isotope SPECT imaging of the peptides showed a similar organ and tumor uptake to single-isotope studies (cRGDfK-DOTA, 1.5 ± 0.8%ID cm(-3); cRADfK-DOTA, 0.2 ± 0.1%ID cm(-3)), but with higher statistical relevance (p-value 0.007, n = 8). This demonstrated that, for the same relevance, seven animals were required in case of a single-isotope test design as compared with only three animals when a dual-isotope test was used. Interchanging radionuclides did not influence the biodistribution of the peptides. Dual-isotope SPECT after simultaneous injection of (111)In and (177)Lu-labeled cRGD and cRAD was shown to be a valuable method for paired testing of the in vivo target specificity of ligands in molecular imaging tracer design.
Therapeutic Delivery | 2014
Sander Langereis; Nm Nicole Hijnen; Gustav J. Strijkers; Klaas Nicolay; Holger Grüll
Liposomes are a class of nanovesicles that have been explored extensively in the biomedical arena for early diagnosis and treatment of disease. In recent years, several liposomal drug formulations have been clinically approved in oncology. In a modular approach, the properties of liposomes can be tailored for combined molecular MRI, therapy and image-guided delivery of therapeutic drugs. Over the last year, extensive research has been performed in the authors laboratory on paramagnetic liposomes as innovative imaging probes for the detection of specific molecular or cellular targets and image-guided drug delivery using multifunctional, temperature-sensitive liposomes. A number of key achievements by the authors group will be highlighted in this research spotlight.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Nm Nicole Hijnen; Ecm Esther Kneepkens; Mariska de Smet; Sander Langereis; Edwin Heijman; Holger Grüll
Significance MRI-guided high-intensity focused ultrasound (MR-HIFU) is noninvasive technology able to focally heat tumor tissue from hyperthermic up to ablative temperatures. Although ablative temperatures can be used to destroy cancerous tissue directly, adequate ablation of tumor margins is often impossible due to the vicinity of vital structures, leaving a potential source for local recurrence. Another therapeutic option in oncology is hyperthermia-triggered local drug delivery using MR-HIFU in combination with temperature-sensitive liposomes (TSLs). In this study, we compare different MR-HIFU treatment schemes comprising ablation and hyperthermia-triggered drug delivery with respect to drug distribution and therapeutic efficacy. We show that a combination protocol of hyperthermia-induced drug delivery followed by ablation resulted in a homogeneous drug distribution and the highest therapeutic effect. Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim.