Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noa Noy is active.

Publication


Featured researches published by Noa Noy.


Molecular and Cellular Biology | 2002

Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription

Nguan Soon Tan; Natacha S. Shaw; Nicolas Vinckenbosch; Peng Liu; Rubina Yasmin; Béatrice Desvergne; Walter Wahli; Noa Noy

ABSTRACT Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARγ and PPARβ, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARγ and PPARβ and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARβ-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.


Journal of Biological Chemistry | 1999

Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid

Diane Dong; Sarah E. Ruuska; David J. Levinthal; Noa Noy

The pleiotropic effects of retinoic acid (RA) in mammalian cells are mediated by two classes of proteins: the retinoic acid receptors (RAR) and cellular retinoic acid-binding proteins (CRABP-I and CRABP-II). Here we show that expression of CRABP-II, but not CRABP-I, markedly enhanced RAR-mediated transcriptional activation of a reporter gene in COS-7 cells. The equilibrium dissociation constants of complexes of CRABP-I or CRABP-II with RA were found to differ by 2-fold. It is thus unlikely that the distinct effects of the two proteins on transactivation stem from differential ligand-binding affinities. The mechanisms by which RA transfers from the CRABPs to RAR were thus investigated directly. The rate constant for movement of RA from CRABP-II, but not from CRABP-I, to RAR strongly depended on the concentration of the acceptor. The data suggest that transfer of RA from CRABP-I to RAR involves dissociation of the ligand from the binding protein, followed by association with the receptor. In contrast, movement of RA from CRABP-II to the receptor is facilitated by a mechanism that involves direct interactions between CRABP-II and RAR. These findings reveal a striking functional difference between CRABP-I and CRABP-II, and point at a novel mechanism by which the transcriptional activity of RA can be regulated by CRABP-II.


Molecular and Cellular Biology | 2002

Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest.

Anuradha Budhu; Noa Noy

ABSTRACT Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional activity of RAR and the functional consequences of these effects were studied. We show that CRABP-II, a predominantly cytosolic protein, massively undergoes nuclear localization upon binding of retinoic acid; that it interacts with RAR in a ligand-dependent fashion; and that, in the presence of retinoic acid, the CRABP-II-RAR complex is a short-lived intermediate. The data establish that potentiation of the transcriptional activity of RAR stems directly from the ability of CRABP-II to channel retinoic acid to the receptor. We demonstrate further that overexpression of CRABP-II in MCF-7 mammary carcinoma cells dramatically enhances their sensitivity to retinoic acid-induced growth inhibition. Conversely, diminished expression of CRABP-II renders these cells retinoic acid resistant. Taken together, the data unequivocally establish the function of CRABP-II in modulating the RAR-mediated biological activities of retinoic acid.


Molecular and Cellular Biology | 2009

All-trans-Retinoic Acid Represses Obesity and Insulin Resistance by Activating both Peroxisome Proliferation-Activated Receptor β/δ and Retinoic Acid Receptor

Daniel C. Berry; Noa Noy

ABSTRACT Many biological activities of all-trans-retinoic acid (RA) are mediated by the ligand-activated transcription factors termed retinoic acid receptors (RARs), but this hormone can also activate the nuclear receptor peroxisome proliferation-activated receptor β/δ (PPARβ/δ). We show here that adipocyte differentiation is accompanied by a shift in RA signaling which, in mature adipocytes, allows RA to activate both RARs and PPARβ/δ, thereby enhancing lipolysis and depleting lipid stores. In vivo studies using a dietary-induced mouse model of obesity indicated that onset of obesity is accompanied by downregulation of adipose PPARβ/δ expression and activity. RA treatment of obese mice induced expression of PPARβ/δ and RAR target genes involved in regulation of lipid homeostasis, leading to weight loss and improved insulin responsiveness. RA treatment also restored adipose PPARβ/δ expression. The data indicate that suppression of obesity and insulin resistance by RA is largely mediated by PPARβ/δ and is further enhanced by activation of RARs. By targeting two nuclear receptors, RA may be a uniquely efficacious agent in the therapy and prevention of the metabolic syndrome.


Annual Review of Nutrition | 2010

Between Death and Survival: Retinoic Acid in Regulation of Apoptosis

Noa Noy

The vitamin A metabolite all-trans-retinoic acid (RA) regulates multiple biological processes by virtue of its ability to regulate gene expression. It thus plays critical roles in embryonic development and is involved in regulating growth, remodeling, and metabolic responses in adult tissues. RA can also suppress carcinoma cell growth and is currently used in treatment of some cancers. Growth inhibition by RA may be exerted by induction of differentiation, cell cycle arrest, or apoptosis, or by a combination of these activities. Paradoxically, in the context of some cells, RA not only fails to inhibit growth but, instead, enhances proliferation and survival. This review focuses on the involvement of RA in regulating apoptotic responses. It includes brief overviews of transcriptional signaling by RA and of apoptotic pathways, and then addresses available information on the mechanisms by which RA induces apoptosis or, conversely, inhibits cell death and enhances survival.


The FASEB Journal | 2010

ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production

Glenn P. Lobo; Susanne Hessel; Anne Eichinger; Noa Noy; Alexander R. Moise; Adrian Wyss; Krzysztof Palczewski; Johannes von Lintig

The uptake of dietary lipids from the small intestine is a complex process that depends on the activities of specific membrane receptors with yet unknown regulatory mechanisms. Using both mouse models and human cell lines, we show here that intestinal lipid absorption by the scavenger receptor class B type 1 (SR‐BI) is subject to control by retinoid signaling. Retinoic acid via retinoic acid receptors induced expression of the intestinal transcription factor ISX. ISX then repressed the expression of SR‐B1 and the carotenoid‐15,15′‐oxygenase Bcmo1. BCMO1 acts downstream of SR‐BI and converts absorbed β,β‐carotene to the retinoic acid precursor, retinaldehyde. Using BCMO1‐knockout mice, we demonstrated increased intestinal SR‐BI expression and systemic β,β‐carotene accumulation. SR‐BI‐dependent accumulation of β,β‐carotene was prevented by dietary retinoids that induced ISX expression. Thus, our study revealed a diet‐responsive regulatory network that controls β,β‐carotene absorption and vitamin A production by negative feedback regulation. The role of SR‐BI in the intestinal absorption of other dietary lipids, including cholesterol, fatty acids, and tocopherols, implicates retinoid signaling in the regulation of lipid absorption more generally and has clinical implications for diseases associated with dyslipidemia.—Lobo, G. P., Hessel, S., Eichinger, A., Noy, N., Moise, A. R., Wyss, A., Palczewski, K., von Lintig, J. ISX is a retinoic acid‐sensitive gatekeeper that controls intestinal β,β‐carotene absorption and vitamin A production. FASEB J. 24, 1656–1666 (2010). www.fasebj.org


Proceedings of the National Academy of Sciences of the United States of America | 2008

Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARβ/δ to RAR

Thaddeus T. Schug; Daniel C. Berry; Illia A. Toshkov; Le Cheng; Alexander Yu. Nikitin; Noa Noy

Retinoic acid (RA) displays potent anticarcinogenic activities that are mediated by the nuclear retinoic acid receptors (RARs). However, use of RA in oncology is limited by RA resistance acquired during carcinogenesis. Moreover, in some cancers, RA facilitates rather than inhibits growth. A clue to this paradoxical behavior was recently suggested by the findings that RA also activates PPARβ/δ, a receptor involved in mitogenic and anti-apoptotic activities. The observations that partitioning of RA between its two receptors is regulated by two intracellular lipid-binding proteins—CRABP-II, which targets RA to RAR, and FABP5, which delivers it to PPARβ/δ—further suggest that RA resistance may stem from the deregulation of the binding proteins, resulting in activation of PPARβ/δ rather than RAR. Here, we show that, in the RA-resistant mouse model of breast cancer MMTV-neu, RA indeed activates the nonclassical RA receptor PPARβ/δ. This behavior was traced to an aberrantly high intratumor FABP5/CRABP-II ratio. Decreasing this ratio in mammary tissue diverted RA from PPARβ/δ to RAR and suppressed tumor growth. The data demonstrate the existence of a mechanism that underlies RA resistance in tumors, indicate that CRABP-II functions as a tumor suppressor, and suggest that the inhibition of FABP5 may comprise a therapeutic strategy for overcoming RA resistance in some tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses.

Daniel C. Berry; Hui Jin; Avijit Majumdar; Noa Noy

It currently is believed that vitamin A, retinol, functions through active metabolites: the visual chromophore 11-cis-retinal, and retinoic acids, which regulate gene transcription. Retinol circulates in blood bound to retinol-binding protein (RBP) and is transported into cells by a membrane protein termed “stimulated by retinoic acid 6” (STRA6). We show here that STRA6 not only is a vitamin A transporter but also is a cell-surface signaling receptor activated by the RBP–retinol complex. Association of RBP-retinol with STRA6 triggers tyrosine phosphorylation, resulting in recruitment and activation of JAK2 and the transcription factor STAT5. The RBP–retinol/STRA6/JAK2/STAT5 signaling cascade induces the expression of STAT target genes, including suppressor of cytokine signaling 3 (SOCS3), which inhibits insulin signaling, and peroxisome proliferator-activated receptor gamma (PPARγ), which enhances lipid accumulation. These observations establish that the parental vitamin A molecule is a transcriptional regulator in its own right, reveal that the scope of biological functions of the vitamin is broader than previously suspected, and provide a rationale for understanding how RBP and retinol regulate energy homeostasis and insulin responses.


Cancer Research | 2005

Suppression of Mammary Carcinoma Growth by Retinoic Acid: Proapoptotic Genes Are Targets for Retinoic Acid Receptor and Cellular Retinoic Acid–Binding Protein II Signaling

Leslie J. Donato; Noa Noy

Retinoic acid (RA) displays pronounced anticarcinogenic activities in several types of cancer. Whereas the mechanisms that underlie this activity remain incompletely understood, tumor suppression by RA is believed to emanate primarily from its ability to regulate transcription of multiple target genes. Here, we investigated molecular events through which RA inhibits the growth of MCF-7 mammary carcinoma cells, focusing on the involvement of the two proteins that mediate transcriptional activation by RA, the nuclear hormone receptor retinoic acid receptor (RAR) and the cellular retinoic acid-binding protein (CRABP) II, in this process. RA treatment of MCF-7 cells did not affect cell cycle distribution but triggered pronounced apoptosis. Accordingly, expression array analyses revealed that RA induces the expression of several proapoptotic genes, including caspase 7 and caspase 9. Whereas caspase 7 is an indirect responder to RA signaling, caspase 9 is a novel direct target for RAR, and it harbors a functional retinoic acid response element in its second intron. In agreement with the known role of CRABP-II in enhancing the transcriptional activity of RAR, the binding protein augmented RA-induced up-regulation of caspase 9, cooperated with RA in activating both caspase 7 and 9, and amplified the ability of RA to trigger apoptosis. Surprisingly, the data indicate that CRABP-II also displays proapoptotic activities on its own. Specifically, overexpression of CRABP-II, in the absence of RA, up-regulated the expression of Apaf1 and triggered caspase 7 and caspase 9 cleavage. These observations suggest that, in addition to its known role in direct delivery of RA to RAR, CRABP-II may have an additional, RA-independent, function.


Cancer Research | 2007

Suppression of Mammary Carcinoma Cell Growth by Retinoic Acid: the Cell Cycle Control Gene Btg2 Is a Direct Target for Retinoic Acid Receptor Signaling

Leslie J. Donato; Jean H. Suh; Noa Noy

The anticarcinogenic activities of retinoic acid (RA) are believed to be mediated by the nuclear RA receptor (RAR) and by the RA-binding protein cellular RA-binding protein-II (CRABP-II). In MCF-7 mammary carcinoma cells, growth inhibition by RA entails an early cell cycle arrest followed by induction of apoptosis. Here, we aimed to obtain insights into the initial cell cycle response. We show that a 3- to 5-h RA pulse is sufficient for inducing a robust growth arrest 2 to 4 days later, demonstrating inhibition of the G1-S transition by RA is triggered by immediate-early RAR targets and does not require the continuous presence of the hormone throughout the arrest program. Expression array analyses revealed that RA induces the expression of several genes involved in cell cycle regulation, including the p53-controlled antiproliferative gene B-cell translocation gene, member 2 (Btg2) and the BTG family member Tob1. We show that induction of Btg2 by RA does not require de novo protein synthesis and is augmented by overexpression of CRABP-II. Additionally, we identify a RA response element in the Btg2 promoter and show that the element binds retinoid X receptor/RAR heterodimers in vitro, is occupied by the heterodimers in cells, and can drive RA-induced activation of a reporter gene. Hence, Btg2 is a novel direct target for RA signaling. In concert with the reports that Btg2 inhibits cell cycle progression by down-regulating cyclin D1, induction of Btg2 by RA was accompanied by a marked decrease in cyclin D1 expression. The observations thus show that the antiproliferative activity of RA in MCF-7 cells is mediated, at least in part, by Btg2.

Collaboration


Dive into the Noa Noy's collaboration.

Top Co-Authors

Avatar

Daniel C. Berry

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sander Kersten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colleen M. Croniger

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge