Noam Bloch
Mellanox Technologies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noam Bloch.
grid computing | 2010
Richard L. Graham; Stephen W. Poole; Pavel Shamis; Gil Bloch; Noam Bloch; Hillel Chapman; Michael Kagan; Ariel Shahar; Ishai Rabinovitz; Gilad Shainer
This paper introduces the newly developed Infini- Band (IB) Management Queue capability, used by the Host Channel Adapter (HCA) to manage network task data flow dependancies, and progress the communications associated with such flows. These tasks include sends, receives, and the newly supported wait task, and are scheduled by the HCA based on a data dependency description provided by the user. This functionality is supported by the ConnectX-2 HCA, and provides the means for delegating collective communication management and progress to the HCA, also known as collective communication offload. This provides a means for overlapping collective communications managed by the HCA and computation on the Central Processing Unit (CPU), thus making it possible to reduce the impact of system noise on parallel applications using collective operations. This paper further describes how this new capability can be used to implement scalable Message Passing Interface (MPI) collective operations, describing the high level details of how this new capability is used to implement the MPI Barrier collective operation, focusing on the latency sensitive performance aspects of this new capability. This paper concludes with small scale bench- mark experiments comparing implementations of the barrier collective operation, using the new network offload capabilities, with established point-to-point based implementations of these same algorithms, which manage the data flow using the central processing unit. These early results demonstrate the promise this new capability provides to improve the scalability of high- performance applications using collective communications. The latency of the HCA based implementation of the barrier is similar to that of the best performing point-to-point based implementation managed by the central processing unit, starting to outperform these as the number of processes involved in the collective operation increases.
ieee international symposium on parallel distributed processing workshops and phd forum | 2010
Richard L. Graham; Stephen W. Poole; Pavel Shamis; Gil Bloch; Noam Bloch; Hillel Chapman; Michael Kagan; Ariel Shahar; Ishai Rabinovitz; Gilad Shainer
This paper explores the computation and communication overlap capabilities enabled by the new CORE-Direct hardware capabilities introduced in the InfiniBand Network Interface Card (NIC) ConnectX-2. We use the latency dominated nonblocking barrier algorithm in this study, and find that at 64 process count, a contiguous time slot of about 80% of the nonblocking barrier time is available for computation. This time slot increases as the number of processes participating increases. In contrast, Central Processing Unit (CPU) based implementations provide a time slot of up to 30% of the nonblocking barrier time. This bodes well for the scalability of simulations employing offloaded collective operations. These capabilities can be used to reduce the effects of system noise, and when using non-blocking collective operations may also be used to hide the effects of application load imbalance.
EuroMPI'10 Proceedings of the 17th European MPI users' group meeting conference on Recent advances in the message passing interface | 2010
Ishai Rabinovitz; Pavel Shamis; Richard L. Graham; Noam Bloch; Gilad Shainer
As the scale of High Performance Computing (HPC) systems continues to increase, demanding that we extract even more parallelism from applications, the need to move communication management away from the Central Processing Unit (CPU) becomes even greater. Moving this management to the network, frees up CPU cycles for computation, making it possible to overlap computation and communication. In this paper we continue to investigate how to best use the new CORE-Direct support added in the ConnectX-2 Host Channel Adapter (HCA) for creating high performance, asynchronous collective operations that are managed by the HCA. Specifically we consider the network topology, creating a two-level communication hierarchy, reducing the MPI Barrier completion time by 45%, from 26.59 microseconds, when not considering network topology, to 14.72 microseconds, with the CPU based collective barrier operation completing in 19.04 microseconds. The nonblocking barrier algorithm has similar performance, with about 50% of that time available for computation.
Archive | 2001
Noam Bloch; Freddy Gabbay; Michael Kagan; Alon Webman; Diego Crupnicoff
Archive | 2010
Noam Bloch; Gil Bloch; Ariel Shachar; Hillel Chapman; Ishai Rabinobitz; Pavel Shamis; Gilad Shainer
Archive | 2001
Noam Bloch; Hillel Chapman
Archive | 2009
Michael Kagan; Noam Bloch; Ariel Shachar
Archive | 2009
Michael Kagan; Noam Bloch
Archive | 2009
Diego Crupnicoff; Michael Kagan; Ariel Shahar; Noam Bloch; Hillel Chapman
Archive | 2012
Noam Bloch; Eitan Hirshberg; Michael Kagan