Noam Zelcer
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noam Zelcer.
Journal of Clinical Investigation | 2006
Noam Zelcer; Peter Tontonoz
The liver X receptors (LXRs) are nuclear receptors that play central roles in the transcriptional control of lipid metabolism. LXRs function as nuclear cholesterol sensors that are activated in response to elevated intracellular cholesterol levels in multiple cell types. Once activated, LXRs induce the expression of an array of genes involved in cholesterol absorption, efflux, transport, and excretion. In addition to their function in lipid metabolism, LXRs have also been found to modulate immune and inflammatory responses in macrophages. Synthetic LXR agonists promote cholesterol efflux and inhibit inflammation in vivo and inhibit the development of atherosclerosis in animal models. The ability of LXRs to integrate metabolic and inflammatory signaling makes them particularly attractive targets for intervention in human metabolic disease.
Science | 2009
Noam Zelcer; Cynthia Hong; Rima Boyadjian; Peter Tontonoz
Idolizing Cholesterol Control The low-density lipoprotein receptor (LDLR) removes LDL, the so-called “bad” cholesterol particles, from the blood through a mechanism that involves LDL binding and internalization into liver cells. Because the LDLR plays a pivotal role in heart disease risk, there is substantial interest in understanding how its expression is regulated, and a large body of previous work has established the importance of transcriptional control. A new study identifies a signaling pathway that appears to regulate the LDLR at the level of protein degradation. Zelcer et al. (p. 100, published online 11 June) show that a sterol-responsive transcription factor called LXR induces the expression of Idol (for inducible degrader of the LDLR), a protein that triggers ubiquitination of the receptor and targets it for degradation. Activation of this pathway suppresses cellular uptake of LDL and, in a mouse model, leads to higher plasma LDL levels, raising the possibility that the pathway could be targeted pharmacologically to control plasma cholesterol levels. Cholesterol metabolism is regulated by a signaling pathway that targets the LDL receptor for degradation. Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density lipoprotein (LDL) uptake. LXR inhibits the LDL receptor (LDLR) pathway through transcriptional induction of Idol (inducible degrader of the LDLR), an E3 ubiquitin ligase that triggers ubiquitination of the LDLR on its cytoplasmic domain, thereby targeting it for degradation. LXR ligand reduces, whereas LXR knockout increases, LDLR protein levels in vivo in a tissue-selective manner. Idol knockdown in hepatocytes increases LDLR protein levels and promotes LDL uptake. Conversely, adenovirus-mediated expression of Idol in mouse liver promotes LDLR degradation and elevates plasma LDL levels. The LXR-Idol-LDLR axis defines a complementary pathway to sterol response element–binding proteins for sterol regulation of cholesterol uptake.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Glen Reid; Peter R. Wielinga; Noam Zelcer; Ingrid van der Heijden; Annemieke Kuil; Marcel de Haas; Jan Wijnholds; Piet Borst
Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the ATP-binding cassette (ABC) transporter ABCC [multidrug resistance protein (MRP)] family of membrane export pumps. In inside-out membrane vesicles derived from insect cells or HEK293 cells, MRP4 catalyzed the time- and ATP-dependent uptake of prostaglandin E1 (PGE1) and PGE2. In contrast, MRP1, MRP2, MRP3, and MRP5 did not transport PGE1 or PGE2. The MRP4-mediated transport of PGE1 and PGE2 displayed saturation kinetics, with Km values of 2.1 and 3.4 μM, respectively. Further studies showed that PGF1α, PGF2α, PGA1, and thromboxane B2 were high-affinity inhibitors (and therefore presumably substrates) of MRP4. Furthermore, several nonsteroidal antiinflammatory drugs were potent inhibitors of MRP4 at concentrations that did not inhibit MRP1. In cells expressing the prostaglandin transporter PGT, the steady-state accumulation of PGE1 and PGE2 was reduced proportional to MRP4 expression. Inhibition of MRP4 by an MRP4-specific RNA interference construct or by indomethacin reversed this accumulation deficit. Together, these data suggest that MRP4 can release prostaglandins from cells, and that, in addition to inhibiting prostaglandin synthesis, some nonsteroidal antiinflammatory drugs might also act by inhibiting this release.
Cell | 2008
Steven J. Bensinger; Michelle N. Bradley; Sean B. Joseph; Noam Zelcer; Edith M. Janssen; Mary Ann Hausner; Roger Shih; John S. Parks; Peter A. Edwards; Beth D. Jamieson; Peter Tontonoz
Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers induction of the oxysterol-metabolizing enzyme SULT2B1, consequent suppression of the LXR pathway for cholesterol transport, and promotion of the SREBP pathway for cholesterol synthesis. Ligation of LXR during T cell activation inhibits mitogen-driven expansion, whereas loss of LXRbeta confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the antiproliferative action of LXR. Mice lacking LXRbeta exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These results implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.
Immunity | 2009
Noelia A-Gonzalez; Steven J. Bensinger; Cynthia Hong; Susana Beceiro; Michelle N. Bradley; Noam Zelcer; José Manuel Deniz; Cristina M. Ramírez; Mercedes Diaz; Germán Gallardo; Carlos M. Ruiz de Galarreta; Jon Salazar; Felix Lopez; Peter A. Edwards; John S. Parks; Miguel Andujar; Peter Tontonoz; Antonio Castrillo
Effective clearance of apoptotic cells by macrophages is essential for immune homeostasis. The transcriptional pathways that allow macrophages to sense and respond to apoptotic cells are poorly defined. We found that liver X receptor (LXR) signaling was important for both apoptotic cell clearance and the maintenance of immune tolerance. Apoptotic cell engulfment activated LXR and thereby induced the expression of Mer, a receptor tyrosine kinase critical for phagocytosis. LXR-deficient macrophages exhibited a selective defect in phagocytosis of apoptotic cells and an aberrant proinflammatory response to them. As a consequence of these defects, mice lacking LXRs manifested a breakdown in self-tolerance and developed autoantibodies and autoimmune glomerulonephritis. Treatment with an LXR agonist ameliorated disease progression in a mouse model of lupus-like autoimmunity. Thus, activation of LXR by apoptotic cells engages a virtuous cycle that promotes their own clearance and couples engulfment to the suppression of inflammatory pathways.
Biochimica et Biophysica Acta | 2000
Piet Borst; Noam Zelcer; A. van Helvoort
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardts macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.
Biochemical Journal | 2003
Noam Zelcer; Glen Reid; Peter R. Wielinga; Annemieke Kuil; Ingrid van der Heijden; John D. Schuetz; Piet Borst
Human multidrug-resistance protein (MRP) 4 transports cyclic nucleotides and when overproduced in mammalian cells mediates resistance to some nucleoside analogues. Recently, it has been shown that Mrp4 is induced in the livers of Fxr ((-/-)) mice, which have increased levels of serum bile acids. Since MRP4, like MRP1-3, also mediates transport of a model steroid conjugate substrate, oestradiol 17-beta-D-glucuronide (E(2)17betaG), we tested whether MRP4 may be involved in the transport of steroid and bile acid conjugates. Bile salts, especially sulphated derivatives, and cholestatic oestrogens inhibited the MRP4-mediated transport of E(2)17betaG. Inhibition by oestradiol 3,17-disulphate and taurolithocholate 3-sulphate was competitive, suggesting that these compounds are MRP4 substrates. Furthermore, we found that MRP4 transports dehydroepiandrosterone 3-sulphate (DHEAS), the most abundant circulating steroid in humans, which is made in the adrenal gland. The ATP-dependent transport of DHEAS by MRP4 showed saturable kinetics with K (m) and V (max) values of 2 microM and 45 pmol/mg per min, respectively (at 27 degrees C). We further studied the possible involvement of other members of the MRP family of transporters in the transport of DHEAS. We found that MRP1 transports DHEAS in a glutathione-dependent manner and exhibits K (m) and V (max) values of 5 microM and 73 pmol/mg per min, respectively (at 27 degrees C). No transport of DHEAS was observed in membrane vesicles containing MRP2 or MRP3. Our findings suggest a physiological role for MRP1 and MRP4 in DHEAS transport and an involvement of MRP4 in transport of conjugated steroids and bile acids.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Noam Zelcer; Negar Khanlou; Ryan Clare; Qingguang Jiang; Erin G. Reed-Geaghan; Gary E. Landreth; Harry V. Vinters; Peter Tontonoz
Alzheimers disease (AD) is an age-dependent neurodegenerative disease that causes progressive cognitive impairment. The initiation and progression of AD has been linked to cholesterol metabolism and inflammation, processes that can be modulated by liver x receptors (LXRs). We show here that endogenous LXR signaling impacts the development of AD-related pathology. Genetic loss of either Lxrα or Lxrβ in APP/PS1 transgenic mice results in increased amyloid plaque load. LXRs regulate basal and inducible expression of key cholesterol homeostatic genes in the brain and act as potent inhibitors of inflammatory gene expression. Ligand activation of LXRs attenuates the inflammatory response of primary mixed glial cultures to fibrillar amyloid β peptide (fAβ) in a receptor-dependent manner. Furthermore, LXRs promote the capacity of microglia to maintain fAβ-stimulated phagocytosis in the setting of inflammation. These results identify endogenous LXR signaling as an important determinant of AD pathogenesis in mice. We propose that LXRs may be tractable targets for the treatment of AD due to their ability to modulate both lipid metabolic and inflammatory gene expression in the brain.
AIDS | 2002
Maarten T. Huisman; Johan W. Smit; Kristel M. L. Crommentuyn; Noam Zelcer; Hugh R. Wiltshire; Jos H. Beijnen; Alfred H. Schinkel
Background: Various drug transporters of the ATP-binding cassette (ABC) family restrict the oral bioavailability and cellular, brain, testis, cerebrospinal fluid and fetal penetration of substrate drugs. MDRI P-glycoprotein (P-gp) has been demonstrated to transport most HIV protease inhibitors (HPI) and to reduce their oral bioavailability and lymphocyte, brain, testis and fetal penetration, possibly resulting in major limiting effects on the therapeutic efficacy of these drugs. Objectives: To investigate whether the ABC transporters MRP1, MRP2, MRP3, MRP5 and breast cancer resistance protein 1 (Bcrp1) are efficient transporters of the HPI saquinavir, ritonavir and indinavir. Methods: Polarized epithelial non-human (canine) cell lines transduced with human or murine complementary DNA (cDNA) for each of the transporters were used to study transepithelial transport of the HPI. Results: MRP2 efficiently transported saquinavir, ritonavir and indinavir and this transport could be enhanced by probenecid. Sulfinpyrazone was also able to enhance MRP2-mediated saquinavir transport. In contrast, MRP1, MRP3, MRP5, or Bcrp1 did not efficiently transport the HPI tested. Conclusions: Human MRP2 actively transports several HPI and could, based on its known and assumed tissue distribution, therefore reduce HPI oral bioavailability. It may also limit brain and fetal penetration of these drugs and increase their hepatobiliary, intestinal and renal clearance. MRP2 function and enhancement of its activity could adversely affect the therapeutic efficacy, including the pharmacological sanctuary penetration, of HPI. In vivo inhibition of MRP2 function might, therefore, improve HIV/AIDS therapy.
Cancer Research | 2004
Pauline Breedveld; Noam Zelcer; Dick Pluim; Özgür Sönmezer; Matthijs M. Tibben; Jos H. Beijnen; Alfred H. Schinkel; Olaf van Tellingen; Piet Borst; Jan H. M. Schellens
The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1–4 (MRP1–4; ABCC1–4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an increase in the serum concentrations of MTX and its main metabolite 7-hydroxymethotrexate. We hypothesized that benzimidazoles interfere with the clearance of MTX and/or 7-hydroxymethotrexate by inhibition of the ATP-binding cassette drug transporters BCRP and/or MRP2, two transporters known to transport MTX and located in apical membranes of epithelia involved in drug disposition. First, we investigated the mechanism of interaction between benzimidazoles (pantoprazole and omeprazole) and MTX in vitro in membrane vesicles from Sf9 cells infected with a baculovirus containing human BCRP or human MRP2 cDNA. In Sf9-BCRP vesicles, pantoprazole and omeprazole inhibited MTX transport (IC50 13 μm and 36 μm, respectively). In Sf9-MRP2 vesicles, pantoprazole did not inhibit MTX transport and at high concentrations (1 mm), it even stimulated MTX transport 1.6-fold. Secondly, we studied the transport of pantoprazole in MDCKII monolayers transfected with mouse Bcrp1 or human MRP2. Pantoprazole was actively transported by Bcrp1 but not by MRP2. Finally, the mechanism of the interaction was studied in vivo using Bcrp1−/− mice and wild-type mice. Both in wild-type mice pretreated with pantoprazole to inhibit Bcrp1 and in Bcrp1−/− mice that lack Bcrp1, the clearance of i.v. MTX was decreased significantly 1.8- to 1.9-fold compared with the clearance of i.v. MTX in wild-type mice. The conclusion is as follows: benzimidazoles differentially affect transport of MTX mediated by BCRP and MRP2. Competition for BCRP may explain the clinical interaction between MTX and benzimidazoles.