Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noboru Katayama is active.

Publication


Featured researches published by Noboru Katayama.


Ecological Entomology | 2007

The use of honeydew in foraging for aphids by larvae of the ladybird beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae)

Toru Ide; Nobuhiko Suzuki; Noboru Katayama

Abstract 1. To clarify the use of honeydew in foraging for aphids by larvae of the ladybird beetle, Coccinella septempunctata L., searching behaviour of ladybird larvae for Aphis craccivora Koch and Acyrthosiphon pisum Harris and the abundance of honeydew under aphid colonies were examined in laboratory experiments.


Population Ecology | 2010

Belowground microbial symbiont enhances plant susceptibility to a spider mite through change in soybean leaf quality.

Noboru Katayama; Takaaki Nishida; Zhi Qi Zhang; Takayuki Ohgushi

To examine how rhizobia affect the chemical and nutrient status in leaves of soybean (Glycine max L.), and how rhizobia change plant susceptibility to a generalist spider mite (Tetranycus urticae), we cultivated root-nodulating soybeans (R+) and their non-nodulating mutant (R−) in a common garden. We experimentally fertilized the plants with nitrogen to examine effects of rhizobia on the plant traits and plant susceptibility to spider mites at different nitrogen levels. R+ plants produced more leaves containing greater nitrogen and less total phenolics than R− plants. Spider mites fed on R+ leaves produced more eggs than those fed on R− leaves. The positive effect of rhizobia on spider mite fecundity could be due to an increase in foliar N content and/or to a decrease in concentration of phenolics. Although root nodule mass did not differ among different nitrogen levels, ureide-N, an indicator of nitrogen provided by rhizobia, in xylem sap decreased at moderate and high soil nitrogen levels. Therefore, we expected that rhizobia effects on egg production of the spider mite would decrease in high soil nitrogen conditions. However, the effect of rhizobia was still maintained even at high soil nitrogen levels. Thus, soil nitrogen and rhizobia may independently affect the reproductive performance of the spider mite.


Plant Ecology | 2011

Anti-herbivory defense of two Vicia species with and without extrafloral nectaries

Noboru Katayama; Nobuhiko Suzuki

The effects of direct and indirect defenses differ among plant species, and the variation in the mode of plant defenses might reflect physiological and/or ecological constraints of each mode of defense related to the growth and reproduction of individual plant species. To evaluate the advantages and disadvantages of indirect ant-mediated defense via extrafloral nectaries (EFNs), we compared the herbivory pressure, leaf chemicals, vegetative growth, and reproduction between two species of vetches, Vicia sativa var. angustifolia (Reichard) Wahlenb (Leguminosae) with EFNs and V. hirsuta (L.) SF Gray without EFNs (or with very small EFNs). Indirect ant defense of V. sativa was not consistently reliable because of the low constancy of ant attraction. In addition, V. sativa was more vulnerable to attack by herbivores than V. hirsuta. The estimated total amount of sugars secreted by EFNs of V. sativa corresponded to 0.5% of total leaf biomass, and 0.07% of total plant biomass, indicating a low investment to the production of extrafloral nectar. Vicia sativa plants grew more rapidly than V. hirsuta plants during the reproductive stage. Therefore, we consider that V. sativa adopts the ant defense via EFNs in spite of its low reliability because the indirect ant defense supported by EFNs requires only low investment, allowing the plants to attain rapid growth in the early spring.


Population Ecology | 2010

Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mite

Takaaki Nishida; Noboru Katayama; Naoyuki Izumi; Takayuki Ohgushi

It is widely recognized that arbuscular mycorrhizal fungi (AMF) improve plant growth and nutrient conditions, but their effects can vary from negative to positive depending on AMF species. Since the performance of herbivorous arthropods varies with plant quality, different AMF species should differently affect the density of herbivorous arthropods on plants and the herbivore-induced plant responses. We examined the indirect effects of AMF on the number of spider mites (Tetranychus urticae) and the number of damaged leaves in an outdoor glass-chamber experiment, using Lotus japonicus plants inoculated with one of four different AMF species (Gigaspora margarita, Glomus etunicatum, Gl. intraradices, and Acaulospora longula). Plants with Gi. margarita and A. longula had significantly fewer female mites than plants with Gl. etunicatum and Gl. intraradices, and plants with Gi. margarita had the fewest damaged leaves, followed by plants with A. longula,Gl. intraradices, and Gl. etunicatum. To examine species-specific effects of AMF on herbivore-induced plant responses, we carried out a bioassay with eggs laid by spider mites, and analyses of leaf chemicals (carbon, nitrogen, phosphorus, and total phenolics) using plants subjected or not subjected to herbivory. The bioassay showed that mite egg production and its changes following mite herbivory changed depending on the AMF species. In addition, Principal component analysis for leaf chemicals revealed not only mite-induced changes in leaf chemical composition, but also AMF effects on the herbivore-induced response in a species-specific way. Thus, we need to pay more attention to the species identity of AMF as an important factor in determining the strength of effects of belowground AMF on the performance and/or preferences of aboveground herbivores.


Ecological Research | 2013

Why do ants shift their foraging from extrafloral nectar to aphid honeydew

Noboru Katayama; David H. Hembry; Masaru Hojo; Nobuhiko Suzuki

When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.


Ecological Entomology | 2011

Community-wide effects of below-ground rhizobia on above-ground arthropods

Noboru Katayama; Zhi Qi Zhang; Takayuki Ohgushi

1. Plants take nutrients for their growth and reproduction from not only soil but also symbiotic microbes in the rhizosphere, and therefore below‐ground microbes may indirectly influence the above‐ground arthropod community through changes in the quality and quantity of plants.


Ecological Research | 2008

Seasonally different modes of seed dispersal in the prostrate annual, Chamaesyce maculata (L.) Small (Euphorbiaceae), with multiple overlapping generations

Yoshihiro K. Ohnishi; Nobuhiko Suzuki; Noboru Katayama; Shin Teranishi

The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.


Plant Ecology | 2012

Plasticity in the expression of direct and indirect defence traits of young plants of Mallotus japonicus in relation to soil nutritional conditions

Akira Yamawo; Noboru Katayama; Nobuhiko Suzuki; Yoshio Hada

Although soil nutrients can influence the defence strategy of plants that have multiple defence traits, to date, there have been few studies to examine this. To evaluate the effect of soil nutrients on multiple plant defences, we cultivated Mallotus japonicus under three soil nutritional conditions in the field, and experimentally examined the expression of a physical defence trait (trichomes), chemical traits (pellucid dots), and biotic traits (extrafloral nectaries (EFNs) and pearl bodies) of the plants, and the number of ants visiting them. Under the low soil nutritional condition, plants strongly expressed the physical defence by trichomes and chemical defence by pellucid dots, meaning that the young plants adopted direct defences under the poor soil nutritional condition. Under the high soil nutritional condition, in contrast, the plants strongly expressed the indirect defence traits. They produced abundant EFNs and pearl bodies, and attracted many ants. These results suggest that young plants of M. japonicus use different defence modes in response to different soil nutritional conditions.


Journal of Plant Interactions | 2011

Belowground rhizobia positively affect abundances of aboveground sap feeding and leaf chewing herbivores

Noboru Katayama; Zhi Qi Zhang; Takayuki Ohgushi

Abstract Belowground rhizobia positively affect abundances of aboveground sap feeding and leaf chewing herbivores.


PLOS ONE | 2016

Networks depicting the fine-scale co-occurrences of fungi in soil horizons

Hirokazu Toju; Osamu Kishida; Noboru Katayama; Kentaro Takagi

Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

Collaboration


Dive into the Noboru Katayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Hojo

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge