Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuhide Kobori is active.

Publication


Featured researches published by Nobuhide Kobori.


Neuroscience Letters | 2006

Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents

Jing Zhao; Nobuhide Kobori; Jaroslaw Aronowski; Pramod K. Dash

Stroke is the third leading cause of death and disability in the United States. As several biochemical mechanisms have been proposed to contribute to stroke pathophysiology, treatments acting on multiple targets may be desirable. Sulforaphane (SUL), a naturally occurring isothiocyanate present in cruciferous vegetables, has been shown to induce the expression of multiple NF-E2-related factor-2 (Nrf2) responsive genes. In the present study, we demonstrate that systemically administered SUL can enter the brain as determined by increased mRNA and protein levels of the Nrf2-responsive gene heme oxygenase 1 (HO-1). Delayed administration (15 min) of a single dose of SUL significantly decreased cerebral infarct volume following focal ischemia, suggesting a potential therapeutic value for this compound.


Molecular Brain Research | 2002

Altered expression of novel genes in the cerebral cortex following experimental brain injury

Nobuhide Kobori; Guy L. Clifton; Pramod K. Dash

Damage to the cerebral cortex results in neurological impairments such as motor, attention, memory and executive dysfunctions. To examine the molecular mechanisms contributing to these deficits, mRNA expression was profiled using high-density cDNA microarray hybridization after experimental cortical impact injury in mice. The mRNA levels at 2 h, 6 h, 24 h, 3 days and 14 days after injury were compared with those of control animals. This revealed 86 annotated genes and 24 expression sequence tags (ESTs) as being differentially expressed with a 1.5-fold or greater change. Quantitative real-time PCR analysis was used to independently verify these results for selected genes. Seven functional classes of genes were found to be altered following injury, including transcription factors, signal transduction genes and inflammatory proteins. While a few of these genes have been previously reported to be differentially regulated following injury, the most of the genes have not been previously implicated in traumatic brain injury (TBI) pathophysiology. For example, consistent with previous reports, the transcription factor c-jun and the neurotrophic factor bdnf mRNA levels were altered as a result of TBI. Among the novel genes, the mRNA levels for the high mobility group protein 1 (hmg-1), the regulator of G-protein signaling 2 (rgs-2), the transforming growth factor beta inducible early growth response (tieg), the inhibitor of DNA binding 3 (id3), and the heterogeneous nuclear ribonucleoprotein H (hnrnp h) were changed following injury. The functional significance of these genes in neurite outgrowth, neuronal regeneration, and plasticity following injury are discussed.


Neuroscience | 2009

Persistent working memory dysfunction following traumatic brain injury: Evidence for a time-dependent mechanism

Meg M. Hoskison; Anthony N. Moore; Bingqian Hu; Sara A. Orsi; Nobuhide Kobori; Pramod K. Dash

The prefrontal cortex is highly vulnerable to traumatic brain injury (TBI) resulting in the dysfunction of many high-level cognitive and executive functions such as planning, information processing speed, language, memory, attention, and perception. All of these processes require some degree of working memory. Interestingly, in many cases, post-injury working memory deficits can arise in the absence of overt damage to the prefrontal cortex. Recently, excess GABA-mediated inhibition of prefrontal neuronal activity has been identified as a contributor to working memory dysfunction within the first month following cortical impact injury of rats. However, it has not been examined if these working memory deficits persist, and if so, whether they remain amenable to treatment by GABA antagonism. Our findings show that working memory dysfunction, assessed using both the delay match-to-place and delayed alternation T-maze tasks, following lateral cortical impact injury persists for at least 16 weeks post-injury. These deficits were found to be no longer the direct result of excess GABA-mediated inhibition of medial prefrontal cortex neuronal activity. Golgi staining of prelimbic pyramidal neurons revealed that TBI causes a significant shortening of layers V/VI basal dendrite arbors by 4 months post-injury, as well as an increase in the density of both basal and apical spines in these neurons. These changes were not observed in animals 14 days post-injury, a time point at which administration of GABA receptor antagonists improves working memory function. Taken together, the present findings, along with previously published reports, suggest that temporal considerations must be taken into account when designing mechanism-based therapies to improve working memory function in TBI patients.


The Journal of Neuroscience | 2006

Reversal of Brain Injury-Induced Prefrontal Glutamic Acid Decarboxylase Expression and Working Memory Deficits by D1 Receptor Antagonism

Nobuhide Kobori; Pramod K. Dash

Working memory (WM), the ability to transiently hold information in mind, is essential for high-level cognitive functions that are often impaired in brain-injured patients. The cellular and molecular mechanisms contributing to WM deficits, which can manifest in the absence of overt damage, in these patients are unknown. The function of the dorsolateral prefrontal cortex in humans and monkeys, and the medial prefrontal cortex (mPFC), in rodents is critical for WM. We demonstrate that controlled cortical impact injury of rats causes a long-lasting WM impairment that is associated with increased levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) in the mPFC for up to 1 month after injury. A single administration of dopamine D1 antagonists at 14 d after injury is sufficient to decrease GAD67 levels and restore WM for at least 1 week. These findings indicate that inhibition of prefrontal neuronal activity contributes to WM deficits and that strategies to reduce GAD67 expression can offer prolonged WM improvement in brain-injured patients.


Journal of Biological Chemistry | 2004

Enhancement of Tyrosine Hydroxylase Phosphorylation and Activity by Glial Cell Line-derived Neurotrophic Factor

Nobuhide Kobori; Jack C. Waymire; John W. Haycock; Guy L. Clifton; Pramod K. Dash

Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis.


Neurochemical Research | 2004

A Molecular Description of Brain Trauma Pathophysiology Using Microarray Technology: An Overview

Pramod K. Dash; Nobuhide Kobori; Anthony N. Moore

It has been estimated that 50% of human transcriptome, the collection of mRNA in a cell, is expressed in the brain, making it one of the most complex organs to understand in terms of genomic responses to injury (1). The availability of genome sequences for several organisms coupled with the increasing affordability of microarray technologies makes it feasible to monitor the mRNA levels of thousands of genes simultaneously. In this paper, we provide an overview of findings using both cDNA- and oligonucleotide-based microarray analyses after experimental traumatic brain injury (TBI). Specifically, the utility of this methodology as a means of cataloging the biochemical sequelae of brain trauma and elucidating novel genes or pathways for further study is discussed. Furthermore, we offer future directions for the continued evaluation of microarray results and discuss the usefulness of microarray techniques as a testing format for determining the efficacy of mechanism-based therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Multiple coregulatory control of tyrosine hydroxylase gene transcription

Sirigiri Divijendra Natha Reddy; Suresh K. Rayala; Kazufumi Ohshiro; Suresh B. Pakala; Nobuhide Kobori; Pramod K. Dash; Sung Yun; Jun Qin; Bert W. O'Malley; Rakesh Kumar

Despite ubiquitous expression and a high level of metastasis-associated protein 1 (MTA1) coregulator, the physiological role of the MTA1 coactivator remains unknown. We found that MTA1 is a bona fide coactivator and stimulator of tyrosine hydroxylase (TH) transcription in neuronal cells and that MTA1-null mice had lower TH expression in the striatum and substantial nigra. MTA1 physically achieves these functions by interacting directly with DJ1 (Parkinson disease 7) and in turn recruits the DJ1/MTA1/RNA polymerase II complex to the bicoid binding element (BBE) in the TH promoter. Furthermore, we found that the MTA1/DJ1 complex is required for optimum stimulation of the TH expression by paired like homeodomain transcription factor (Pitx3) homeodomain transcription factor and that the MTA1/DJ1 complex is recruited to the TH gene chromatin via the direct interaction of MTA1 with Pitx3. These findings reveal a role for MTA1 as an upstream coactivator of TH and advance the notion of polygenic regulation of a disease-causing gene by coordinated interactions of three regulatory proteins.


Neuroreport | 1999

Visualization of mRNA expression in CNS using 11C-labeled phosphorothioate oligodeoxynucleotide

Nobuhide Kobori; Yoshio Imahori; Katsuyoshi Mineura; Satoshi Ueda

Antisense phosphorothioate oligodeoxynucleotide for mRNA of glial fibrillary acidic protein (GFAP) was labeled with the positron emitter 11C and administered i.v. to rats bearing glioma, which were expected to exhibit active expression of GFAP. Antisense oligodeoxynucleotide was retained in tumor cells, yielding clear images of tumors, while the control 20% mismatch oligodeoxynucleotide and sense-strand oligodeoxynucleotide were not retained in tumor cells. Findings revealed sequence-specific binding of the antisense oligodeoxynucleotide to the GFAP mRNA. Our methods can be used directly for non-invasive imaging of human gene expression using PET, a frequently used method of clinical examination.


Neuroscience | 2011

Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction

Nobuhide Kobori; Bingqian Hu; Pramod K. Dash

The prefrontal cortex is highly vulnerable to traumatic brain injury (TBI) and its structural and/or functional alterations as a result of TBI can give rise to persistent working memory (WM) dysfunction. Using a rodent model of TBI, we have described profound WM deficits following TBI that are associated with increases in prefrontal catecholamine (both dopamine and norepinephrine) content. In this study, we examined if enhanced norepinephrine signaling contributes to TBI-associated WM dysfunction. We demonstrate that administration of α1 adrenoceptor antagonists, but not α2A agonist, at 14 days post-injury significantly improved WM performance. mRNA analysis revealed increased levels of α1A, but not α1B or α1D, adrenoceptor in the medial prefrontal cortex (mPFC) of brain-injured rats. As α1A and 1B adrenoceptor promoters contain putative cAMP response element (CRE) sequences, we therefore examined if CRE-binding protein (CREB) actively engages these sequences in order to increase receptor gene transcription following TBI. Our results show that the phosphorylation of CREB is enhanced in the mPFC at time points during which increased α1A mRNA expression was observed. Chromatin immunoprecipitation (ChIP) assays using mPFC tissue from injured animals indicated increased phospho-CREB binding to the CRE sites of α1A, but not α1B, promoter compared to that observed in uninjured controls. To address the translatability of our findings, we tested the efficacy of the FDA-approved α1 antagonist Prazosin and observed that this drug improves WM in injured animals. Taken together, these studies suggest that enhanced CREB-mediated expression of α1 adrenoceptor contributes to TBI-associated WM dysfunction, and therapies aimed at reducing α1 signaling may be useful in the treatment of TBI-associated WM deficits in humans.


The Journal of Neuroscience | 2016

Activation of alpha 7 cholinergic nicotinic receptors reduce blood–brain barrier permeability following experimental traumatic brain injury

Pramod K. Dash; Jing Zhao; Nobuhide Kobori; John B. Redell; Michael J. Hylin; Kimberly N. Hood; Anthony N. Moore

Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood–brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7−/−) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood–brain barrier (BBB) in response to traumatic brain injury (TBI) allows for the accumulation of circulating fluids and proinflammatory cells in the injured brain. These processes can exacerbate TBI pathology and outcome. While the role of inflammation in the injured tissue has been examined in some detail, the contribution of peripheral inflammation in BBB breakdown and ensuing pathology has not been well defined. We present experimental evidence to indicate that the stimulation of nicotinic acetylcholine α7 receptors (nAChRa7s) can reduce peripheral inflammation and BBB breakdown after TBI. These results suggest that activators of nAChRa7 may have therapeutic utility for the treatment of TBI.

Collaboration


Dive into the Nobuhide Kobori's collaboration.

Top Co-Authors

Avatar

Pramod K. Dash

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Anthony N. Moore

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Satoshi Ueda

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bingqian Hu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Guy L. Clifton

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Michael J. Hylin

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Tarumi Yamaki

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bert W. O'Malley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cameron B. Jeter

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge