Nobuhito Murai
Astellas Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobuhito Murai.
Neuropharmacology | 2009
Hiroko Yamamoto; Yukinori Shimoshige; Takayuki Yamaji; Nobuhito Murai; Toshiaki Aoki; Nobuya Matsuoka
The present study was designed to investigate the anti-allodynic effects of current analgesic agents, such as pregabalin, amitriptyline, mexiletine, morphine, and diclofenac, in a rat model of streptozotocin (STZ)-induced diabetic neuropathy. Diabetic rats developed a sustained decrease in withdrawal threshold response to the von Frey test within 8 weeks after a single injection of STZ (45 mg/kg, i.v.). The anti-allodynic effects of analgesic agents were examined after a single oral or subcutaneous administration at 3 and 7 weeks after beginning of STZ-treatment. Pregabalin (3-30 mg/kg, p.o.), an antiepileptic agent, dose-dependently blocked the mechanical allodynia in rats treated both at 3 and 7 weeks. Mexiletine (10-100 mg/kg, p.o.), a sodium channel blocker, dose-dependently ameliorated mechanical allodynia in rats treated at 3 weeks; however, the efficacy was diminished at 7 weeks. Morphine (1-10 mg/kg, s.c.) was effective in rats treated at 3 weeks; however, it was ineffective at 7 weeks. Conversely, an antidepressant amitriptyline (0.3-3 mg/kg, p.o.) improved mechanical allodynia in rats treated at 7 weeks, whereas it was ineffective at 3 weeks. Diclofenac, a non-steroidal anti-inflammatory drug, was ineffective at both time points. These results demonstrate that, except for diclofenac, the standard analgesic agents tested can effectively alleviate the mechanical allodynia seen in STZ-induced diabetic neuropathy. Their efficacies varied depending on the duration of the diabetic condition, suggesting that temporal changes in pharmacodynamic factors could affect the responsiveness of this model to analgesic agents.
Journal of Pharmacology and Experimental Therapeutics | 2014
Nobuhito Murai; Toshiaki Aoki; Seiji Tamura; Toshihiro Sekizawa; Shuichiro Kakimoto; Mina Tsukamoto; Tomoya Oe; Ryugo Enomoto; Nozomu Hamakawa; Nobuya Matsuoka
AS1069562 [(R)-2-[(1H-inden-7-yloxy)methyl]morpholine monobenzenesulfonate] is the (+)-isomer of indeloxazine, which had been used clinically for the treatment of cerebrovascular diseases with multiple pharmacological actions, including serotonin (5-HT) and norepinephrine (NE) reuptake inhibition. Here we investigated the analgesic effects of AS1069562 in a rat model of chronic constriction injury (CCI)–induced neuropathic pain and the spinal monoamine turnover. These effects were compared with those of the antidepressants duloxetine and amitriptyline. AS1069562 significantly elevated extracellular 5-HT and NE levels in the rat spinal dorsal horn, although its 5-HT and NE reuptake inhibition was much weaker than that of duloxetine in vitro. In addition, AS1069562 increased the ratio of the contents of both 5-HT and NE to their metabolites in rat spinal cord, whereas duloxetine slightly increased only the ratio of the content of 5-HT to its metabolite. In CCI rats, AS1069562 and duloxetine significantly ameliorated mechanical allodynia, whereas amitriptyline did not. AS1069562 and amitriptyline significantly ameliorated thermal hyperalgesia, and duloxetine tended to ameliorate it. Furthermore, AS1069562, duloxetine, and amitriptyline significantly improved spontaneous pain–associated behavior. In a gastric emptying study, AS1069562 affected gastric emptying at the same dose that exerted analgesia in CCI rats. On the other hand, duloxetine and amitriptyline significantly reduced gastric emptying at lower doses than those that exerted analgesic effects. These results indicate that AS1069562 broadly improved various types of neuropathic pain–related behavior in CCI rats with unique characteristics in spinal monoamine turnover, suggesting that AS1069562 may have potential as a treatment option for patients with neuropathic pain, with a different profile from currently available antidepressants.
Pharmacology, Biochemistry and Behavior | 2016
Nobuhito Murai; Toshihiro Sekizawa; Takayasu Gotoh; Tomonari Watabiki; Masayasu Takahashi; Shuichiro Kakimoto; Yuko Takahashi; Masanobu Iino; Yukinori Nagakura
Given that patients with neuropathic pain suffer a mixture of spontaneous and evoked pain symptoms, we assessed the effects of drugs with different mechanism of action on spontaneous and evoked pain-associated behaviors in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Frequent aberrant limb movement on the operated side was measured to assess spontaneous pain-associated behavior, and mechanical allodynia and thermal hyperalgesia were evaluated to assess evoked pain-associated behaviors. These three types of behavior were assessed after administration of the following drugs: pregabalin (α2δ-subunit ligand), morphine (μ-opioid receptor agonist), perampanel (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid [AMPA] receptor antagonist), clonidine, dexmedetomidine (α2-adrenoceptor agonists), and diclofenac (non-steroidal anti-inflammatory drug [NSAID]). Pregabalin at an oral dose of 10 or 30mg/kg significantly alleviated frequent aberrant limb movement and mechanical allodynia, but not thermal hyperalgesia. Morphine at a subcutaneous dose of 1 or 3mg/kg significantly improved all three types of behavior. Perampanel at an oral dose of 1mg/kg attenuated only frequent aberrant limb movement. Intraperitoneal administration of clonidine (0.01 or 0.03mg/kg) and dexmedetomidine (0.03mg/kg) significantly improved all three types of behavior, while diclofenac did not relieve any of the behaviors. Pregabalin, clonidine, and dexmedetomidine significantly decreased motor performance at doses close to analgesic doses in the rotarod test. The present study demonstrates that responses to spontaneous and evoked pain symptoms in neuropathic pain condition differ depending on a drugs mechanism of action. The selection and application of drugs according to the specific symptoms would be considered for the medication of patients with neuropathic pain.
Neuropharmacology | 2008
Shunji Yamazaki; Takayuki Yamaji; Nobuhito Murai; Hiroko Yamamoto; Raymond Price; Nobuya Matsuoka; Seitaro Mutoh
FK1706, a derivative of FK506, is a non-immunosuppressive immunophilin ligand with significant neurotrophic activity mediated via FKBP-52 and the RAS/RAF/MAPK signaling pathway. Here, we tested the effect of FK1706 on painful diabetic neuropathy in rat model of diabetes induced by streptozotocin (STZ). FK1706 ameliorated mechanical allodynia in this model at doses over 0.32 mg/kg, p.o., even if treatment was initiated after neuropathy was established, and did not affect plasma glucose levels. Furthermore, this improvement continued at least 4 weeks after the last administration. In morphological analysis, FK1706 treatment also restored intraepidermal nerve fiber density in footpad skin to almost normal levels. Gabapentin also improved mechanical allodynia in the same model, but efficacy disappeared the day after administration stopped. Allodynia responses were potentiated by co-administration of both compounds. Thus, FK1706 ameliorated painful diabetic neuropathy via a different mechanism from gabapentin and improved morphological outcomes, indicating that FK1706 improves painful diabetic neuropathy by modifying the underlying disease pathology.
Neuropharmacology | 2014
Nobuhito Murai; Toshiaki Aoki; Seiji Tamura; Hiroko Yamamoto; Nozomu Hamakawa; Nobuya Matsuoka
AS1069562 is the (+)-isomer of indeloxazine, which had been clinically used as a cerebral activator for the treatment of cerebrovascular diseases with serotonin and norepinephrine reuptake inhibition (SNRI) and neuroprotection. Here, we compared the analgesic effects of repeated treatment with AS1069562 and duloxetine, a selective SNRI, on pain-related behavior in a rat model of streptozotocin (STZ)-induced diabetic neuropathy. Further, we also evaluated the effects on the expression of neurotrophic factors and nerve conduction velocity. AS1069562 and duloxetine by single daily administration for 4 weeks significantly improved mechanical allodynia in STZ-induced diabetic rats and did not affect plasma glucose level or body weight. Interestingly, the analgesic effect of AS1069562 continued after a consecutive 1-week treatment discontinuation, although the plasma concentration of AS1069562 was reduced to undetectable levels. In contrast, the efficacy of duloxetine disappeared after treatment discontinuation. Expression analysis demonstrated that AS1069562 significantly restored decreased insulin-like growth factor 1 and fibroblast growth factor 2 mRNA levels in dorsal root ganglion and spinal cord, respectively, whereas duloxetine did not affect the expression levels of neurotrophic factors. In addition, AS1069562 reversed the slowing of nerve conduction velocity. The results of this study indicate that the analgesic effect of repeated dosing of AS1069562 but not duloxetine is persistent even after a 1-week drug discontinuation in STZ-induced diabetic rats. Restoration of neurotrophic factors may be involved in the curative-like pharmacological effect of this agent. Thus, AS1069562 may potentially offer a better treatment option for patients with painful diabetic neuropathy than duloxetine via different mechanisms.
Neurological Research | 2012
Shunji Yamazaki; Takayuki Yamaji; Nobuhito Murai; Hiroko Yamamoto; Takashi Matsuda; Raymond Price; Nobuya Matsuoka
Abstract Objectives: FK1706, a non-immunosuppressive immunophilin ligand, potentiated nerve growth factor-induced neurite outgrowth, putatively mediated via FKBP-52 and the Ras/Raf/MAPK signaling pathway. It also improved mechanical allodynia accompanied by the recovery of intraepidermal nerve fiber density in a painful diabetic neuropathy in rats. The aim of this study was to demonstrate the gene expression profiling in dorsal root ganglion in streptozotocin-induced diabetic rats related to pain and anti-allodynia effects of FK1706 administration to elucidate the putative mechanisms of its neurotrophic activity in vivo. Here, we analyzed gene expression of the dorsal root ganglia using microarray together with behavioral measurement of mechanical allodynia in diabetic rats to try to capture the global fingerprint of changes in gene expression associated with FK1706 administration. Methods: The withdrawal threshold of streptozotocin-induced diabetic rats was measured by an electronic von Frey system. The gene expression of the ganglia from L4 to L6 obtained from streptozotocin-treated rats with or without chronic administration of FK1706 was analyzed using an Affymetrix GeneChip to extract interesting genes in the development of mechanical allodynia in diabetes and anti-allodynia effect of FK1706. Results: Daily oral administration of FK1706 improved mechanical allodynia without decreasing plasma glucose levels. From gene expression analysis, the expression of thioredoxin interacting protein gene was sustained to increased change, whereas those of collagen I alpha1, II alpha1 and IX alpha1 genes were decreased from 2 to 4 weeks after streptozotocin injection. While no changes occurred after 1 week of commencing of FK1706 administration (2 weeks after streptozotocin injection), changes in expression more than 1·5-fold were observed for genes such as Ckm, Actn3, Atp2a1, Bglap, Acta1, Myl1, Tnnc2, and Mylpf at 2 weeks of FK1706 administration (3 weeks after streptozotocin injection). The genes RGD1564519, Hbb, LOC689064, Arpc4 and S100a9 were upregulated in comparison with streptozotocin-injected control group at 3 weeks of FK1706 administration; on the other hand, those of Actn3, Atp2a1 were downregulated by FK1706. Discussion: FK1706 ameliorates mechanical allodynia with accompanying increases in gene expressions possibly related to neurite outgrowth, development, differentiation, and nociceptive sensitivity.
Neuropharmacology | 2017
Nobuhito Murai; Hideki Hiyama; Tetsuo Kiso; Toshihiro Sekizawa; Tomonari Watabiki; Hiromasa Oka; Toshiaki Aoki
&NA; Lysophosphatidic acid (LPA) is a bioactive lipid that acts via at least six G protein‐coupled receptors, LPA receptors 1–6 (LPA1‐6), for various physiological functions. We examined (1) whether LPA5 is involved in pain signaling in the spinal cord; and (2) the pharmacological effects of a novel LPA5 antagonist on intrathecal prostaglandin (PG)‐ and (S)‐&agr;‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐induced allodynia, and neuropathic and inflammatory pain in rodents. Intrathecal injection of a selective LPA5 agonist, geranylgeranyl diphosphate, and a non‐selective agonist, LPA, induced allodynia in wild type, but not in LPA5 knockout mice. These novel results suggest that LPA5 is important for pain signal transmission in the spinal cord. AS2717638 (6,7‐dimethoxy‐2‐(5‐methyl‐1,2‐benzoxazol‐3‐yl)‐4‐(piperidin‐1‐ylcarbonyl)isoquinolin‐1(2H)‐one) bound to the LPA‐binding site on LPA5 and selectively inhibited LPA‐induced cyclic adenosine monophosphate accumulation in human LPA5‐but not LPA1‐, 2‐, or 3‐expressing cells. Further, oral administration of AS2717638 inhibited LPA5 agonist‐induced allodynia in mice. AS2717638 also significantly improved PGE2‐, PGF2&agr;‐, and AMPA‐induced allodynia, while both pregabalin and duloxetine alleviated only PGE2‐induced allodynia in mice. Similarly, AS2717638 significantly ameliorated static mechanical allodynia and thermal hyperalgesia in rat models of chronic constriction injury (CCI)‐induced neuropathic pain. AS2717638 also showed analgesic effects in a rat model of inflammatory pain. These findings suggest that LPA5 antagonists elicit broad analgesic effects against both neuropathic and inflammatory pain. Accordingly, pharmacological LPA5 antagonists are attractive development candidates for potential novel pain therapies. HighlightsLysophosphatidic acid receptor 5 (LPA5) is involved in spinal pain signaling.A novel LPA5 antagonist shows broad analgesic effects in multiple animal pain models.Pharmacological antagonism of LPA5 is an attractive novel pain therapy.
European Journal of Pharmacology | 2014
Nobuhito Murai; Mina Tsukamoto; Seiji Tamura; Toshiaki Aoki; Nobuya Matsuoka
The (+)-isomer of indeloxazine AS1069562 exerts multiple pharmacological actions including the inhibition of serotonin (5-HT) and norepinephrine reuptake and analgesia in experimental animal pain models. Here, we evaluated the antinociceptive effects of AS1069562 and the antidepressants duloxetine and amitriptyline in mouse models of prostaglandin-induced spinal hypersensitivity. Prostaglandin E2 (PGE2) and F2α (PGF2α) were intrathecally administered to induce spinal hypersensitivity, causing tactile allodynia in mice. Allodynia induced by PGF2α but not by PGE2 was suppressed by desensitization of C-fibers with systemic pretreatment with resiniferatoxin. C-fiber hyperexcitability might therefore play a role in allodynia induced by PGF2α but not PGE2. In the PGE2-induced allodynia model, AS1069562 and duloxetine significantly suppressed allodynia, whereas amitriptyline did not. In the PGF2α-induced allodynia model, AS1069562 and amitriptyline significantly ameliorated allodynia, whereas duloxetine did not. To demonstrate the broad effects of AS1069562 compared to duloxetine, additional studies were conducted to elucidate other target mechanisms of AS1069562 beyond 5-HT and norepinephrine reuptake inhibition. AS1069562 exhibited affinity for both 5-HT1A and 5-HT3 receptors, and the analgesic effect of AS1069562 on PGF2α-induced allodynia was significantly blocked by the 5-HT1A receptor antagonist (S)-WAY100135 and the 5-HT3 receptor agonist SR57227. Taken together, these results indicate that AS1069562 inhibits both C-fiber- and non-C-fiber-dependent prostaglandin-induced allodynia, while duloxetine inhibits only non-C-fiber-triggered allodynia, and amitriptyline inhibits only C-fiber-triggered allodynia. These broad antinociceptive effects of AS1069562 may be due not only to 5-HT and norepinephrine reuptake inhibition but also to its effects on 5-HT receptors such as 5-HT1A and 5-HT3 receptors.
Neuroscience | 2015
Nobuhito Murai; H. Fushiki; S. Honda; Y. Murakami; A. Iwashita; M. Irie; Seiji Tamura; Yukinori Nagakura; Toshiaki Aoki
Serotonin (5-HT) and norepinephrine (NE) have been implicated in the mediation of endogenous analgesic mechanisms via the descending inhibitory pain pathway in the brain, and dysfunction in both the 5-HT and NE systems has been suggested as an etiology of fibromyalgia (FM). Given that 5-HT reuptake inhibition in the brain appears to be associated with pain reduction, this mechanism might exert an analgesic effect also on pain associated with FM. In this case, it would be of interest to investigate the correlation of 5-HT transporter (SERT) occupancy with in vivo analgesic effect on pain associated with FM. Here, we investigated the relationship between SERT occupancies and the analgesic effects of AS1069562, the (+)-isomer of indeloxazine, and duloxetine, which are both 5-HT and NE reuptake inhibitors (SNRIs), on muscular pain in reserpine-induced myalgia (RIM) rats, an animal model of FM-like chronic pain. We also investigated the SERT occupancy level necessary for AS1069562 and duloxetine to exert analgesic effects on muscular pain. AS1069562 and duloxetine attenuated muscular hyperalgesia in RIM rats, representing the first findings to be reported regarding the analgesic effect of AS1069562 on pain associated with FM. SERT occupancy levels of AS1069562 and duloxetine increased in both dose- and plasma and brain concentration-dependent manners. SERT occupancy levels of AS1069562 and duloxetine were significantly correlated with efficacy on muscular pain thresholds in RIM rats. This finding concerning the precise correlation of SERT occupancy with in vivo analgesic effect on pain associated with FM is reported here for the first time. SERT occupancy level above 70% was necessary for AS1069562 and duloxetine to exert significant analgesic effects on muscular pain. These results suggest that SERT occupancy level is useful in determining appropriate analgesic doses of AS1069562 and duloxetine for treating pain symptoms in FM patients.
Scientific Reports | 2018
Yusuke Ohmichi; Mika Ohmichi; Nobuhito Murai; Masaya Yasui; Nobuaki Takeshita; Hidehiro Oshibuchi; Munekazu Naito; Takashi Nakano; Jun Sato
The aim of this study was to clarify the mechanism of disuse-induced muscle hyperalgesia through the evaluation of the pharmacological behaviour of muscle hyperalgesia profiles in chronic post-cast pain (CPCP) rats with acute and chronic-phase mirror-image muscle hyperalgesia treated with diclofenac (NSAID), pregabalin (an inhibitor of Ca2+ channel α2δ), and duloxetine (SNRI). After 2 weeks of cast immobilization, the peak cross-sectional area and muscle wet weight of the ipsilateral soleus and gastrocnemius muscles decreased more significantly in CPCP rats than in untreated rats. Histological findings revealed disuse-induced muscle atrophy in CPCP rats. The blood biochemical parameters of CPCP rats in acute and chronic phases did not differ significantly from those of untreated rats. The diclofenac and pregabalin-treated groups exhibited no improvement in acute or chronic muscle hyperalgesia. In contrast, the duloxetine-treated group exhibited an improvement in acute muscle hyperalgesia, but showed no apparent effect on chronic muscle hyperalgesia on ipsilateral or contralateral sides. However, the chronic muscle hyperalgesia was reversed by intrathecal administration of DAMGO (a μ-opioid receptor agonist). The results suggest that chronic muscle hyperalgesia in CPCP rats did not result from an inflammatory mechanism, and there is only a low probability that it’s caused by a neuropathic mechanism.