Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuki Ozawa is active.

Publication


Featured researches published by Nobuki Ozawa.


Faraday Discussions | 2012

Fate of methanol molecule sandwiched between hydrogen-terminated diamond-like carbon films by tribochemical reactions: tight-binding quantum chemical molecular dynamics study

Kentaro Hayashi; Seiichiro Sato; Shandan Bai; Yuji Higuchi; Nobuki Ozawa; Tomomi Shimazaki; Koshi Adachi; Jean-Michel Martin; Momoji Kubo

Recently, much attention has been given to diamond-like carbon (DLC) as a solid-state lubricant, because it exhibits high resistance to wear, low friction and low abrasion. Experimentally it is reported that gas environments are very important for improving the tribological characteristics of DLC films. Recently one of the authors in the present paper, J.-M. Martin, experimentally observed that the low friction of DLC films is realized under alcohol environments. In the present paper, we aim to clarify the low-friction mechanism of the DLC films under methanol environments by using our tight-binding quantum chemical molecular dynamics method. We constructed the simulation model in which one methanol molecule is sandwiched between two hydrogen-terminated DLC films. Then, we performed sliding simulations of the DLC films. We observed the chemical reaction of the methanol molecule under sliding conditions. The methanol molecule decomposed and then OH-termination of the DLC was realized and the CH3 species was incorporated into the DLC film. We already reported that the OH-terminated DLC film is very effective to achieve good low-friction properties under high pressure conditions, compared to H-terminated DLC films. Here, we suggest that methanol environments are very effective to realize the OH-termination of DLC films which leads to the good low-friction properties.


Journal of the Physical Society of Japan | 2010

Quantum States and Diffusion of Lithium Atom Motion on a Graphene

Yoshiyuki Kubota; Nobuki Ozawa; Hiroshi Nakanishi; Hideaki Kasai

The wave functions and eigenenergies for lithium (Li) atom motion on a graphene were obtained by solving a Schrodinger equation for Li atom motion using the potential energy surface constructed in the framework of density functional theory calculations. The wave functions for Li atom motion showed that the diffusion barriers are lower than those predicted by the potential energy surface due to the quantum effects. The diffusion coefficients based on the transition state theory showed that the diffusion from one hollow site to another along the carbon–carbon bond axis is favored at high temperature, compared to that via the midpoint of carbon–carbon bond.


Japanese Journal of Applied Physics | 2010

A First Principles Study on Dissociation and Adsorption Processes of H2 on Pd3Ag(111) Surface

Hermawan Kresno Dipojono; Allan Abraham B. Padama; Nobuki Ozawa; Hiroshi Nakanishi; Hideaki Kasai

We investigated dissociative adsorption of H2 molecule on Pd3Ag(111) surface based on the constructed potential energy surfaces (PESs) from the results of first principles calculations. This study is performed to understand H2 dissociative adsorption mechanism on Pd3Ag(111) surface which acts as permeable film for H2 which is a product of biomass gasification. The PES results indicate that when the H2 molecule approaches the Ag atom of the 1st atomic layer, the activation barriers for dissociation start to increase. The dissociation of H2 on the surface has negligible activation barrier when the H2 center of mass (CM) is directly above the bridge site of Pd atoms while the hydrogen atoms are directed towards the hcp and fcc hollow sites. The average local density of states (LDOS) of the d-orbital of surface Pd atoms show peak in the region around the Fermi level which is not observed from the LDOS of the Ag atom in Pd3Ag(111) surface. This strongly supports the results of the constructed PES for H2 dissociative adsorption mechanism towards Pd3Ag(111) surface. This study will be significant for the design of hydrogen-permeable films which has applications on biomass-operated fuel cells.


Scientific Reports | 2017

Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction

Maria Isabel De Barros Bouchet; Jean Michel Martin; José Avila; Makoto Kano; Kentaro Yoshida; Takeshi Tsuruda; Shandan Bai; Yuji Higuchi; Nobuki Ozawa; Momoji Kubo; Maria C. Asensio

The achievement of the superlubricity regime, with a friction coefficient below 0.01, is the Holy Grail of many tribological applications, with the potential to have a remarkable impact on economic and environmental issues. Based on a combined high-resolution photoemission and soft X-ray absorption study, we report that superlubricity can be realized for engineering applications in bearing steel coated with ultra-smooth tetrahedral amorphous carbon (ta-C) under oleic acid lubrication. The results show that tribochemical reactions promoted by the oil lubrication generate strong structural changes in the carbon hybridization of the ta-C hydrogen-free carbon, with initially high sp3 content. Interestingly, the macroscopic superlow friction regime of moving mechanical assemblies coated with ta-C can be attributed to a few partially oxidized graphene-like sheets, with a thickness of not more than 1 nm, formed at the surface inside the wear scar. The sp2 planar carbon and oxygen-derived species are the hallmark of these mesoscopic surface structures created on top of colliding asperities as a result of the tribochemical reactions induced by the oleic acid lubrication. Atomistic simulations elucidate the tribo-formation of such graphene-like structures, providing the link between the overall atomistic mechanism and the macroscopic experimental observations of green superlubricity in the investigated ta-C/oleic acid tribological systems.


Scientific Reports | 2015

The reason why thin-film silicon grows layer by layer in plasma-enhanced chemical vapor deposition

Takuya Kuwahara; Hiroshi Ito; Kentaro Kawaguchi; Yuji Higuchi; Nobuki Ozawa; Momoji Kubo

Thin-film Si grows layer by layer on Si(001)-(2 × 1):H in plasma-enhanced chemical vapor deposition. Here we investigate the reason why this occurs by using quantum chemical molecular dynamics and density functional theory calculations. We propose a dangling bond (DB) diffusion model as an alternative to the SiH3 diffusion model, which is in conflict with first-principles calculation results and does not match the experimental evidence. In our model, DBs diffuse rapidly along an upper layer consisting of Si-H3 sites, and then migrate from the upper layer to a lower layer consisting of Si-H sites. The subsequently incident SiH3 radical is then adsorbed onto the DB in the lower layer, producing two-dimensional growth. We find that DB diffusion appears analogous to H diffusion and can explain the reason why the layer-by-layer growth occurs.


RSC Advances | 2014

Tight-binding quantum chemical molecular dynamics simulations of the low friction mechanism of fluorine-terminated diamond-like carbon films

Shandan Bai; Hiroki Murabayashi; Yoshihiko Kobayashi; Yuji Higuchi; Nobuki Ozawa; Koshi Adachi; Jean Michel Martin; Momoji Kubo

The super-low friction mechanism of fluorine-terminated diamond-like carbon (F-terminated DLC) is investigated by using our tight-binding quantum molecular dynamics code and compared with that of hydrogen-terminated DLC (H-terminated DLC). Under a contact pressure of 1 GPa, F- and H-terminated DLC show smooth sliding and low friction coefficients of 0.07 and 0.04, respectively. The ion radius of fluorine is larger than that of hydrogen, which leads to the larger asperity of the F-terminated DLC surface. Thus, the friction coefficient of F-terminated DLC is slightly larger than that of H-terminated DLC. We also perform friction simulations under contact pressures of 3 and 7 GPa. Under a contact pressure of 3 GPa, the friction coefficients are 0.09 and 0.13 for F- and H-terminated DLC, respectively. F-terminated DLC shows the same friction behavior as seen under a contact pressure of 1 GPa, whereas the C–C bond formation reaction is observed at the interface of H-terminated DLC under a contact pressure of 3 GPa, leading to a slightly higher friction coefficient than when under a contact pressure of 1 GPa. Thus, under a contact pressure of 3 GPa, F- and H-terminated DLC show different friction behaviors. Furthermore, under a high contact pressure of 7 GPa, bond formation and dissociation are observed at the friction interface in F- and H-terminated DLC. C–C bond formation is observed more frequently in H-terminated DLC than in F-terminated DLC, and the lifetime of C–C bonds in H-terminated DLC is much longer. At this higher pressure, H-terminated DLC shows a high friction coefficient of 0.42 due to strong C–C bonds at the friction surface, whereas F-terminated DLC shows a low friction coefficient of 0.08. The strong repulsive interaction at the interface of F-terminated DLC that arises from the large negative charge and ion size of fluorine maintains the distance between DLC films under a high contact pressure. This prevents strong C–C bond formation at the friction surface, which results in the low friction properties of F-terminated DLC. We suggest that the friction properties of DLC films under a high contact pressure are improved by F termination.


Journal of Materials Chemistry | 2015

Multi-nanoparticle model simulations of the porosity effect on sintering processes in Ni/YSZ and Ni/ScSZ by the molecular dynamics method

Jingxiang Xu; Shandan Bai; Yuji Higuchi; Nobuki Ozawa; Kazuhisa Sato; Toshiyuki Hashida; Momoji Kubo

Understanding the sintering mechanism in porous anodes is necessary for developing durable anodes suitable for use in solid oxide fuel cells. A multi-nanoparticle sintering simulation method based on molecular dynamics (MD) calculation was developed for this purpose [J. Xu et al., J. Phys. Chem. C, 2013, 117, 9663–9672]. The method can be used to calculate the effect of the porous structure properties, such as the porosity and framework structure, on the sintering, unlike previous sintering simulations with conventional nanoparticle models. We revealed that, in a Ni/YSZ porous anode, the YSZ nanoparticle framework suppresses sintering of Ni nanoparticles by disrupting the growth of the neck between two Ni nanoparticles. In this paper, we used our method to reveal the effect of ceramic type on the sintering processes. We investigated the difference between the sintering and degradation processes in Ni/YSZ and Ni/ScSZ anodes. In the simulation, the degree of sintering of the Ni nanoparticles in Ni/ScSZ was smaller than that in Ni/YSZ. The stronger adhesion of Ni to ScSZ nanoparticles than to YSZ nanoparticles prevented the Ni nanoparticles from approaching each other in the Ni/ScSZ anode, inhibiting sintering. Our multi-nanoparticle sintering MD simulations revealed the different sintering processes for Ni nanoparticles in Ni/YSZ and Ni/ScSZ anodes. We also investigated the effect of sintering on degradation. The hydrogen adsorption sites and electrochemical reaction sites of the hydrogen oxidation decreased as the degree of sintering increased. A low degradation of the Ni/ScSZ anode relative to that of the Ni/YSZ anode was observed. Furthermore, we showed the effect of porosity on degradation induced by sintering in Ni/YSZ and Ni/ScSZ, and found an optimal porosity. These findings cannot be obtained by conventional two- or three-nanoparticle sintering MD simulations. Our multi-nanoparticle sintering simulation method is useful for revealing the types of ceramics suitable for inhibiting sintering and degradation in anodes, and can be used to design durable anodes.


Chemical Record | 2016

Experimental and Quantum Chemical Approaches to Develop Highly Selective Nanocatalysts for CO2 -free Power Circulation.

Miho Yamauchi; Nobuki Ozawa; Momoji Kubo

Renewable electricity must be utilized to usefully suppress the atmospheric CO2 concentration and slow the progression of global warming. We have thus proposed a new concept involving CO2 -free electric power circulation systems via highly selective electrochemical reactions of alcohol/carboxylic acid redox couples. Design concepts for nanocatalysts able to catalyze highly selective electrochemical reactions are provided from both experimental and quantum mechanical perspectives.


Journal of Chemical Physics | 2014

Communication: Different behavior of Young's modulus and fracture strength of CeO2: Density functional theory calculations

Ryota Sakanoi; Tomomi Shimazaki; Jingxiang Xu; Yuji Higuchi; Nobuki Ozawa; Kazuhisa Sato; Toshiyuki Hashida; Momoji Kubo

In this Communication, we use density functional theory (DFT) to examine the fracture properties of ceria (CeO2), which is a promising electrolyte material for lowering the working temperature of solid oxide fuel cells. We estimate the stress-strain curve by fitting the energy density calculated by DFT. The calculated Youngs modulus of 221.8 GPa is of the same order as the experimental value, whereas the fracture strength of 22.7 GPa is two orders of magnitude larger than the experimental value. Next, we combine DFT and Griffith theory to estimate the fracture strength as a function of a crack length. This method produces an estimated fracture strength of 0.467 GPa, which is of the same order as the experimental value. Therefore, the fracture strength is very sensitive to the crack length, whereas the Youngs modulus is not.


ACS Applied Materials & Interfaces | 2016

Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.

Kentaro Kawaguchi; Hiroshi Ito; Takuya Kuwahara; Yuji Higuchi; Nobuki Ozawa; Momoji Kubo

We applied our original chemical mechanical polishing (CMP) simulator based on the tight-binding quantum chemical molecular dynamics (TB-QCMD) method to clarify the atomistic mechanism of CMP processes on a Cu(111) surface polished with a SiO2 abrasive grain in aqueous H2O2. We reveal that the oxidation of the Cu(111) surface mechanically induced at the friction interface is a key process in CMP. In aqueous H2O2, in the first step, OH groups and O atoms adsorbed on a nascent Cu surface are generated by the chemical reactions of H2O2 molecules. In the second step, at the friction interface between the Cu surface and the abrasive grain, the surface-adsorbed O atom intrudes into the Cu bulk and dissociates the Cu-Cu bonds. The dissociation of the Cu-Cu back-bonds raises a Cu atom from the surface that is mechanically sheared by the abrasive grain. In the third step, the raised Cu atom bound to the surface-adsorbed OH groups is removed from the surface by the generation and desorption of a Cu(OH)2 molecule. In contrast, in pure water, there are no geometrical changes in the Cu surface because the H2O molecules do not react with the Cu surface, and the abrasive grain slides smoothly on the planar Cu surface. The comparison between the CMP simulations in aqueous H2O2 and pure water indicates that the intrusion of a surface-adsorbed O atom into the Cu bulk is the most important process for the efficient polishing of the Cu surface because it induces the dissociation of the Cu-Cu bonds and generates raised Cu atoms that are sheared off by the abrasive grain. Furthermore, density functional theory calculations show that the intrusion of the surface-adsorbed O atoms into the Cu bulk has a high activation energy of 28.2 kcal/mol, which is difficult to overcome at 300 K. Thus, we suggest that the intrusion of surface-adsorbed O atoms into the Cu bulk induced by abrasive grains at the friction interface is a rate-determining step in the Cu CMP process.

Collaboration


Dive into the Nobuki Ozawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ito

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge