Nobuko Katoku-Kikyo
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobuko Katoku-Kikyo.
Molecular and Cellular Biology | 2006
Hiroshi Tamada; Nguyen Van Thuan; Peter W. Reed; Dominic Nelson; Nobuko Katoku-Kikyo; Justin Wudel; Teruhiko Wakayama; Nobuaki Kikyo
ABSTRACT Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1β and TIF1β from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.
Nature Cell Biology | 2003
Koichi Gonda; Jason D. Fowler; Nobuko Katoku-Kikyo; Jennifer Haroldson; Justin Wudel; Nobuaki Kikyo
Egg cytoplasm has the capability to reprogramme differentiated somatic nuclei, as shown by nuclear transplantation in animal cloning. The nucleoli of donor nuclei are rapidly disassembled on injection into interphase eggs and are correctly reassembled when donor transcription initiates in the early embryos of frogs and mammals, recapitulating the physiological nucleolar dynamics of early embryogenesis. This is one of the most remarkable structural reorganizations of somatic nuclei in nuclear cloning. Despite the long history of nuclear cloning, almost nothing is known about the molecular mechanism of nucleolar disassembly in egg cytoplasm. Here we show that the Xenopus germ cell proteins FRGY2a and FRGY2b reversibly disassemble somatic nucleoli in egg cytoplasm, independently of continuing ribosomal RNA transcription. The carboxy-terminal domain of FRGY2a, which localizes to the nucleoli, is sufficient for nucleolar disassembly in transfected cells. Our results show that a single protein fragment can trigger reversible disassembly of the complex nucleolar structure.
Journal of Biological Chemistry | 2009
Liudmila Romanova; Anthony Grand; Liying Zhang; Samuel Rayner; Nobuko Katoku-Kikyo; Steven Kellner; Nobuaki Kikyo
Nucleostemin is a nucleolar protein widely expressed in proliferating cells. Nucleostemin is involved in the regulation of cell proliferation, and both depletion and overexpression of nucleostemin induce cell cycle arrest through the p53 signaling pathway. Although the presence of p53-independent functions of nucleostemin has been previously suggested, the identities of these additional functions remained to be investigated. Here, we show that nucleostemin has a novel role as an integrated component of ribosome biogenesis, particularly pre-rRNA processing. Nucleostemin forms a large protein complex (>700 kDa) that co-fractionates with the pre-60 S ribosomal subunit in a sucrose gradient. This complex contains proteins related to pre-rRNA processing, such as Pes1, DDX21, and EBP2, in addition to several ribosomal proteins. We show that the nucleolar retention of DDX21 and EBP2 is dependent on the presence of nucleostemin in the nucleolus. Furthermore, the knockdown of nucleostemin delays the processing of 32 S pre-rRNA into 28 S rRNA. This is accompanied by a substantial decrease of protein synthesis as well as the levels of rRNAs and some mRNAs. In addition, overexpressed nucleostemin significantly promotes the processing of 32 S pre-rRNA. Collectively, these biochemical and functional studies demonstrate a novel role of nucleostemin in ribosome biogenesis. This is a key aspect of the role of nucleostemin in regulating cell proliferation.
Stem Cells | 2011
Hiroyuki Hirai; Tetsuya Tani; Nobuko Katoku-Kikyo; Steven Kellner; Peter Karian; Meri T. Firpo; Nobuaki Kikyo
Induced pluripotent stem cells (iPSCs) can be created by reprogramming differentiated cells through introduction of defined genes, most commonly Oct4, Sox2, Klf4, and c‐Myc (OSKM). However, this process is slow and extremely inefficient. Here, we demonstrate radical acceleration of iPSC creation with a fusion gene between Oct4 and the powerful transactivation domain (TAD) of MyoD (M3O). Transduction of M3O as well as Sox2, Klf4, and c‐Myc into fibroblasts effectively remodeled patterns of DNA methylation, chromatin accessibility, histone modifications, and protein binding at pluripotency genes, raising the efficiency of making mouse and human iPSCs more than 50‐fold in comparison to OSKM. These results identified that one of the most critical barriers to iPSC creation is poor chromatin accessibility and protein recruitment to pluripotency genes. The MyoD TAD has a capability of overcoming this problem. Our approach of fusing TADs to unrelated transcription factors has far‐reaching implications as a powerful tool for transcriptional reprogramming beyond application to iPSC technology. STEM CELLS 2011; 29:1349–1361
Cardiovascular Research | 2013
Hiroyuki Hirai; Nobuko Katoku-Kikyo; Susan A. Keirstead; Nobuaki Kikyo
AIMS Fibroblasts can be directly reprogrammed to cardiomyocyte-like cells by introducing defined genes. However, the reprogramming efficiency remains low, delaying the clinical application of this strategy to regenerative cardiology. We previously showed that fusion of the MyoD transactivation domain to the pluripotency transcription factor Oct4 facilitated the transcriptional activity of Oct4, resulting in highly efficient production of induced pluripotent stem cells. We examined whether the same approach can be applied to cardiac transcription factors to facilitate cardiac reprogramming. METHODS AND RESULTS We fused the MyoD domain to Mef2c, Gata4, Hand2, and Tbx5 and transduced these genes in various combinations into mouse non-cardiac fibroblasts. Transduction of the chimeric Mef2c with the wild-types of the other three genes produced much larger beating clusters of cardiomyocyte-like cells faster than the combination of the four wild-type genes, with an efficiency of 3.5%, >15-fold greater than the wild-type genes. CONCLUSION Fusion of a powerful transactivation domain to heterologous factors can increase the efficiency of direct reprogramming of fibroblasts to cardiomyocytes.
Journal of Biological Chemistry | 2009
Liudmila Romanova; Steven Kellner; Nobuko Katoku-Kikyo; Nobuaki Kikyo
Nucleostemin (NS) is a nucleolar protein involved in the regulation of cell proliferation. Both overexpression and knockdown of NS increase the activity of the tumor suppressor protein p53, resulting in cell cycle arrest. In addition, NS regulates processing of pre-rRNA and consequently the level of total protein synthesis. Here, we describe a previously uncharacterized function of NS in the maintenance of the tripartite nucleolar structure as well as the integrity of small nucleolar ribonucleoproteins (snoRNPs). NS is also necessary to maintain the telomerase complex which shares common protein subunits with the H/ACA box snoRNPs. First, immunofluorescence microscopy and electron microscopy demonstrated that knockdown of NS disorganized the nucleolar architecture, in particular, the dense fibrillar component where snoRNPs are localized. Second, gel filtration chromatography and immunoprecipitation indicated that NS depletion leads to dissociation of the components of snoRNPs and the telomerase complex. Third, NS depletion reduced both telomerase activity and the cellular level of pseudouridine, an H/ACA snoRNP-mediated modification of rRNA and other RNAs that are important for their folding and stability. These morphological, biochemical and functional studies demonstrate that NS plays an important role to maintain nucleolar structure and function on a more fundamental level than previously thought.
Journal of Biological Chemistry | 2006
Koichi Gonda; Justin Wudel; Dominic Nelson; Nobuko Katoku-Kikyo; Peter W. Reed; Hiroshi Tamada; Nobuaki Kikyo
In Xenopus somatic cell nuclear cloning, the nucleoli of donor nuclei rapidly and almost completely disappear in egg cytoplasm. We previously showed that the germ cell-specific proteins FRGY2a and FRGY2b were responsible for this unusually drastic nucleolar disassembly. The nucleolar disassembly occurs without inhibition of pre-rRNA transcription, a well known trigger for nucleolar segregation, and the mechanism for the nucleolar disassembly by FRGY2a and FRGY2b remains largely unknown. In this study, we searched for FRGY2a-interacting proteins and investigated the functional consequences of their interactions through a series of experiments. We showed that during the nucleolar disassembly, FRGY2a localized to the nucleoli of isolated nuclei and was capable of disassembling purified nucleoli, suggesting a direct interaction between FRGY2a and nucleolar components. Using a His tag pulldown approach, we identified the abundant and multifunctional nucleolar protein B23 as a potential target of FRGY2a and its related human protein YB1. A specific interaction between FRGY2a/YB1 and B23 was confirmed by co-immunoprecipitation. Finally, B23 knockdown using short interfering RNA and a subsequent add-back experiment confirmed that B23 was necessary for nucleolar disassembly by YB1. We propose that FRGY2a and YB1 disassemble nucleoli by sequestering B23, which is associated with pre-ribosomes and other structurally important nucleolar components.
PLOS ONE | 2012
Hiroyuki Hirai; Nobuko Katoku-Kikyo; Peter Karian; Meri T. Firpo; Nobuaki Kikyo
A major difficulty of producing induced pluripotent stem cells (iPSCs) has been the low efficiency of reprogramming differentiated cells into pluripotent cells. We previously showed that 5% of mouse embryonic fibroblasts (MEFs) were reprogrammed into iPSCs when they were transduced with a fusion gene composed of Oct4 and the transactivation domain of MyoD (called M3O), along with Sox2, Klf4 and c-Myc (SKM). In addition, M3O facilitated chromatin remodeling of pluripotency genes in the majority of transduced MEFs, including cells that did not become iPSCs. These observations suggested the possibility that more than 5% of cells had acquired the ability to become iPSCs given more favorable culture conditions. Here, we raised the efficiency of making mouse iPSCs with M3O-SKM to 26% by culturing transduced cells at low density in serum-free culture medium. In contrast, the efficiency increased from 0.1% to only 2% with the combination of wild-type Oct4 and SKM (OSKM) under the same culture condition. For human iPSCs, M3O-SKM achieved 7% efficiency under a similar serum-free culture condition, in comparison to 1% efficiency with OSKM. This study highlights the power of combining the transactivation domain of MyoD with a favorable culture environment.
Cell Reports | 2018
Matthew Lowe; Jacob Lage; Ellen Paatela; Dane Munson; Reilly Hostager; Ce Yuan; Nobuko Katoku-Kikyo; Mercedes Ruiz-Estévez; Yoko Asakura; James Staats; Mulan Qahar; Michaela Lohman; Atsushi Asakura; Nobuaki Kikyo
SUMMARY Circadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms, Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes because of inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2−/− mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms.
Biochemical and Biophysical Research Communications | 2007
Liying Zhang; Samuel Rayner; Nobuko Katoku-Kikyo; Liudmila Romanova; Nobuaki Kikyo