Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobumasa Takasugi is active.

Publication


Featured researches published by Nobumasa Takasugi.


Nature | 2003

The role of presenilin cofactors in the gamma-secretase complex.

Nobumasa Takasugi; Taisuke Tomita; Ikuo Hayashi; Makiko Tsuruoka; Manabu Niimura; Yasuko Takahashi; Gopal Thinakaran; Takeshi Iwatsubo

Mutations in presenilin genes account for the majority of the cases of the familial form of Alzheimers disease (FAD). Presenilin is essential for γ-secretase activity, a proteolytic activity involved in intramembrane cleavage of Notch and β-amyloid precursor protein (βAPP). Cleavage of βAPP by FAD mutant presenilin results in the overproduction of highly amyloidogenic amyloid β42 peptides. γ-Secretase activity requires the formation of a stable, high-molecular-mass protein complex that, in addition to the endoproteolysed fragmented form of presenilin, contains essential cofactors including nicastrin, APH-1 (refs 15–18) and PEN-2 (refs 16, 19). However, the role of each protein in complex formation and the generation of enzymatic activity is unclear. Here we show that Drosophila APH-1 (Aph-1) increases the stability of Drosophila presenilin (Psn) holoprotein in the complex. Depletion of PEN-2 by RNA interference prevents endoproteolysis of presenilin and promotes stabilization of the holoprotein in both Drosophila and mammalian cells, including primary neurons. Co-expression of Drosophila Pen-2 with Aph-1 and nicastrin increases the formation of Psn fragments as well as γ-secretase activity. Thus, APH-1 stabilizes the presenilin holoprotein in the complex, whereas PEN-2 is required for endoproteolytic processing of presenilin and conferring γ-secretase activity to the complex.


Journal of Biological Chemistry | 2002

Molecular Cloning and Characterization of CALP/KChIP4, a Novel EF-hand Protein Interacting with Presenilin 2 and Voltage-gated Potassium Channel Subunit Kv4

Yuichi Morohashi; Noriyuki Hatano; Susumu Ohya; Rie Takikawa; Tomonari Watabiki; Nobumasa Takasugi; Yuji Imaizumi; Taisuke Tomita; Takeshi Iwatsubo

Presenilin (PS) genes linked to early-onset familial Alzheimers disease encode polytopic membrane proteins that are presumed to constitute the catalytic subunit of γ-secretase, forming a high molecular weight complex with other proteins. During our attempts to identify binding partners of PS2, we cloned CALP (calsenilin-like protein)/KChIP4, a novel member of calsenilin/KChIP protein family that interacts with the C-terminal region of PS. Upon co-expression in cultured cells, CALP was directly bound to and co-localized with PS2 in endoplasmic reticulum. Overexpression of CALP did not affect the metabolism or stability of PS complex, and γ-cleavage of βAPP or Notch site 3 cleavage was not altered. However, co-expression of CALP and a voltage-gated potassium channel subunit Kv4.2 reconstituted the features of A-type K+ currents and CALP directly bound Kv4.2, indicating that CALP functions as KChIPs that are known as components of native Kv4 channel complex. Taken together, CALP/KChIP4 is a novel EF-hand protein interacting with PS as well as with Kv4 that may modulate functions of a subset of membrane proteins in brain.


The Journal of Neuroscience | 2011

BACE1 Activity Is Modulated by Cell-Associated Sphingosine-1-Phosphate

Nobumasa Takasugi; Tomoki Sasaki; Kunimichi Suzuki; Satoko Osawa; Hayato Isshiki; Yukiko Hori; Naoaki Shimada; Takuya Higo; Satoshi Yokoshima; Tohru Fukuyama; Virginia M.-Y. Lee; John Q. Trojanowski; Taisuke Tomita; Takeshi Iwatsubo

Sphingosine kinase (SphK) 1 and 2 phosphorylate sphingosine to generate sphingosine-1-phosphate (S1P), a pluripotent lipophilic mediator implicated in a variety of cellular events. Here we show that the activity of β-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for amyloid-β peptide (Aβ) production, is modulated by S1P in mouse neurons. Treatment by SphK inhibitor, RNA interference knockdown of SphK, or overexpression of S1P degrading enzymes decreased BACE1 activity, which reduced Aβ production. S1P specifically bound to full-length BACE1 and increased its proteolytic activity, suggesting that cellular S1P directly modulates BACE1 activity. Notably, the relative activity of SphK2 was upregulated in the brains of patients with Alzheimers disease. The unique modulatory effect of cellular S1P on BACE1 activity is a novel potential therapeutic target for Alzheimers disease.


Journal of Biological Chemistry | 2005

Aph-1 contributes to the stabilization and trafficking of the γ-secretase complex through mechanisms involving intermolecular and intramolecular interactions

Manabu Niimura; Noriko Isoo; Nobumasa Takasugi; Makiko Tsuruoka; Kumiko Ui-Tei; Kaoru Saigo; Yuichi Morohashi; Taisuke Tomita; Takeshi Iwatsubo

γ-Secretase cleaves type I transmembrane proteins, including β-amyloid precursor protein and Notch, and requires the formation of a protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 for its activity. Aph-1 is implicated in the stabilization of this complex, although its precise mechanistic role remains unknown. Substitution of the first glycine within the transmembrane GXXXG motif of Aph-1 causes a loss-of-function phenotype in Caenorhabditis elegans. Here, using an untranslated region-targeted RNA interference/rescue strategy in Drosophila Schneider 2 cells, we show that Aph-1 contributes to the assembly of the γ-secretase complex by multiple mechanisms involving intermolecular and intramolecular interactions depending on or independent of the conserved glycines. Aph-1 binds to nicastrin forming an early subcomplex independent of the conserved glycines within the endoplasmic reticulum. Certain mutations in the conserved GXXXG motif affect the interaction of the Aph-1·nicastrin subcomplex with presenilin that mediates trafficking of the presenilin·Aph-1·nicastrin tripartite complex to the Golgi. The same mutations decrease the stability of Aph-1 polypeptides themselves, possibly by affecting intramolecular associations through the transmembrane domains. Our data suggest that the proper assembly of the Aph-1·nicastrin subcomplex with presenilin is the prerequisite for the trafficking as well as the enzymatic activity of the γ-secretase complex and that Aph-1 functions as a stabilizing scaffold in the assembly of this complex.


Journal of Biological Chemistry | 2007

Aβ42 Overproduction Associated with Structural Changes in the Catalytic Pore of γ-Secretase COMMON EFFECTS OF PEN-2 N-TERMINAL ELONGATION AND FENOFIBRATE

Noriko Isoo; Chihiro Sato; Hiroyuki Miyashita; Mitsuru Shinohara; Nobumasa Takasugi; Yuichi Morohashi; Shoji Tsuji; Taisuke Tomita; Takeshi Iwatsubo

γ-Secretase is an atypical aspartyl protease that cleaves amyloid β-precursor protein to generate Aβ peptides that are causative for Alzheimer disease. γ-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2. Pen-2 directly binds to transmembrane domain 4 of PS and confers proteolytic activity on γ-secretase, although the mechanism of activation and its role in catalysis remain unknown. Here we show that an addition of amino acid residues to the N terminus of Pen-2 specifically increases the generation of Aβ42, the longer and more aggregable species of Aβ. The effect of the N-terminal elongation of Pen-2 on Aβ42 generation was independent of the amino acid sequences, the expression system and the presenilin species. In vitro γ-secretase assay revealed that Pen-2 directly affects the Aβ42-generating activity of γ-secretase. The elongation of Pen-2 N terminus caused a reduction in the water accessibility of the luminal side of the catalytic pore of PS1 in a similar manner to that caused by an Aβ42-raising γ-secretase modulator, fenofibrate, as determined by substituted cysteine accessibility method. These data suggest a unique mechanism of Aβ42 overproduction associated with structural changes in the catalytic pore of presenilins caused commonly by the N-terminal elongation of Pen-2 and fenofibrate.


PLOS ONE | 2013

FTY720/Fingolimod, a Sphingosine Analogue, Reduces Amyloid-β Production in Neurons

Nobumasa Takasugi; Tomoki Sasaki; Ihori Ebinuma; Satoko Osawa; Hayato Isshiki; Koji Takeo; Taisuke Tomita; Takeshi Iwatsubo

Sphingosine-1-phosphate (S1P) is a pluripotent lipophilic mediator working as a ligand for G-protein coupled S1P receptors (S1PR), which is currently highlighted as a therapeutic target for autoimmune diseases including relapsing forms of multiple sclerosis. Sphingosine related compounds, FTY720 and KRP203 known as S1PR modulators, are phosphorylated by sphingosine kinase 2 (SphK2) to yield the active metabolites FTY720-P and KRP203-P, which work as functional antagonists for S1PRs. Here we report that FTY720 and KRP203 decreased production of Amyloid-β peptide (Aβ), a pathogenic proteins causative for Alzheimer disease (AD), in cultured neuronal cells. Pharmacological analyses suggested that the mechanism of FTY720-mediated Aβ decrease in cells was independent of known downstream signaling pathways of S1PRs. Unexpectedly, 6-days treatment of APP transgenic mice with FTY720 resulted in a decrease in Aβ40, but an increase in Aβ42 levels in brains. These results suggest that S1PR modulators are novel type of regulators for Aβ metabolisms that are active in vitro and in vivo.


Journal of Biological Chemistry | 2002

The mechanism of γ-secretase activities through high molecular weight complex formation of presenilins is conserved in Drosophila melanogaster and mammals

Nobumasa Takasugi; Yasuko Takahashi; Yuichi Morohashi; Taisuke Tomita; Takeshi Iwatsubo

Mutations in presenilin 1 (PS1) and PS2 genes contribute to the pathogenesis of early onset familial Alzheimers disease by increasing secretion of the pathologically relevant Aβ42 polypeptides. PS genes are also implicated in Notch signaling through proteolytic processing of the Notch receptor in Caenorhabditis elegans, Drosophila melanogaster, and mammals. Here we show thatDrosophila PS (Psn) protein undergoes endoproteolytic cleavage and forms a stable high molecular weight (HMW) complex inDrosophila S2 or mouse neuro2a (N2a) cells in a similar manner to mammalian PS. The loss-of-function recessive point mutations located in the C-terminal region of Psn, that cause an early pupal-lethal phenotype resembling Notch mutant in vivo, disrupted the HMW complex formation, and abolished γ-secretase activities in cultured cells. The overexpression of Psn in mouse embryonic fibroblasts lacking PS1 andPS2 genes rescued the Notch processing. Moreover, disruption of the expression of Psn by double-stranded RNA-mediated interference completely abolished the γ-secretase activity in S2 cells. Surprisingly, γ-secretase activity dependent on wild-type Psn was associated with a drastic overproduction of Aβ1–42 from human βAPP in N2a cells, but not in S2 cells. Our data suggest that the mechanism of γ-secretase activities through formation of HMW PS complex, as well as its abolition by loss-of-function mutations located in the C terminus, are highly conserved features inDrosophila and mammals.


Biochemical and Biophysical Research Communications | 2015

Synthetic ceramide analogues increase amyloid-β 42 production by modulating γ-secretase activity.

Nobumasa Takasugi; Tomoki Sasaki; Mitsuru Shinohara; Takeshi Iwatsubo; Taisuke Tomita

γ-Secretase cleaves amyloid β-precursor protein (APP) to generate amyloid-β peptide (Aβ), which is a causative molecule of Alzheimer disease (AD). The C-terminal length of Aβ, which is determined by γ-secretase activity, determines the aggregation and deposition profiles of Aβ, thereby affecting the onset of AD. In this study, we found that the synthetic ceramide analogues dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and (1S,2R-d-erythro-2-N-myristoylamino)-1-phenyl-1-propanol (DMAPP) modulated γ-secretase-mediated cleavage to increase Aβ42 production. Unexpectedly, PDMP and DMAPP upregulated Aβ42 production independent of alteration of ceramide metabolism. Our results propose that synthetic ceramide analogues function as novel γ-secretase modulators that increase Aβ42, and this finding might lead to the understanding of the effect of the lipid environment on γ-secretase activity.


Journal of Alzheimer's Disease | 2017

Consecutive Analysis of BACE1 Function on Developing and Developed Neuronal Cells

Yuji Kamikubo; Nobumasa Takasugi; Kazue Niisato; Yoshie Hashimoto; Takashi Sakurai

The amyloid-β protein precursor (AβPP) is cleaved by a transmembrane protease termed β-site AβPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimers disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.


PLOS ONE | 2018

TMEM30A is a candidate interacting partner for the β-carboxyl-terminal fragment of amyloid-β precursor protein in endosomes

Nobumasa Takasugi; Runa Araya; Yuji Kamikubo; Nanaka Kaneshiro; Ryosuke Imaoka; Hao Jin; Taku Kashiyama; Yoshie Hashimoto; Masaru Kurosawa; Takashi Uehara; Nobuyuki Nukina; Takashi Sakurai

Although the aggregation of amyloid-β peptide (Aβ) clearly plays a central role in the pathogenesis of Alzheimer’s disease (AD), endosomal traffic dysfunction is considered to precede Aβ aggregation and trigger AD pathogenesis. A body of evidence suggests that the β-carboxyl-terminal fragment (βCTF) of amyloid-β precursor protein (APP), which is the direct precursor of Aβ, accumulates in endosomes and causes vesicular traffic impairment. However, the mechanism underlying this impairment remains unclear. Here we identified TMEM30A as a candidate partner for βCTF. TMEM30A is a subcomponent of lipid flippase that translocates phospholipids from the outer to the inner leaflet of the lipid bilayer. TMEM30A physically interacts with βCTF in endosomes and may impair vesicular traffic, leading to abnormally enlarged endosomes. APP traffic is also concomitantly impaired, resulting in the accumulation of APP-CTFs, including βCTF. In addition, we found that expressed BACE1 accumulated in enlarged endosomes and increased Aβ production. Our data suggested that TMEM30A is involved in βCTF-dependent endosome abnormalities that are related to Aβ overproduction.

Collaboration


Dive into the Nobumasa Takasugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge