Nobumichi Furuta
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobumichi Furuta.
Nature | 2013
Maho Hamasaki; Nobumichi Furuta; Atsushi Matsuda; Akiko Nezu; Akitsugu Yamamoto; Naonobu Fujita; Hiroko Oomori; Takeshi Noda; Tokuko Haraguchi; Yasushi Hiraoka; Atsuo Amano; Tamotsu Yoshimori
Autophagy is a tightly regulated intracellular bulk degradation/recycling system that has fundamental roles in cellular homeostasis. Autophagy is initiated by isolation membranes, which form and elongate as they engulf portions of the cytoplasm and organelles. Eventually isolation membranes close to form double membrane-bound autophagosomes and fuse with lysosomes to degrade their contents. The physiological role of autophagy has been determined since its discovery, but the origin of autophagosomal membranes has remained unclear. At present, there is much controversy about the organelle from which the membranes originate—the endoplasmic reticulum (ER), mitochondria and plasma membrane. Here we show that autophagosomes form at the ER–mitochondria contact site in mammalian cells. Imaging data reveal that the pre-autophagosome/autophagosome marker ATG14 (also known as ATG14L) relocalizes to the ER–mitochondria contact site after starvation, and the autophagosome-formation marker ATG5 also localizes at the site until formation is complete. Subcellular fractionation showed that ATG14 co-fractionates in the mitochondria-associated ER membrane fraction under starvation conditions. Disruption of the ER–mitochondria contact site prevents the formation of ATG14 puncta. The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER–mitochondria contact site. These results provide new insight into organelle biogenesis by demonstrating that the ER–mitochondria contact site is important in autophagosome formation.
Molecular Biology of the Cell | 2010
Nobumichi Furuta; Naonobu Fujita; Takeshi Noda; Tamotsu Yoshimori; Atsuo Amano
Autophagy (xenophagy) degrades intracellular bacteria. The cargoes are degraded after the fusion of xenophagosomes with lysosomes. However, the molecular mechanism underlying the fusion remains unclear. Here we show that combinational SNARE proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes.
Microbes and Infection | 2010
Atsuo Amano; Hiroki Takeuchi; Nobumichi Furuta
Outer membrane vesicles (OMVs), ubiquitously shed from Gram-negative bacteria, contain various virulence factors such as toxins, proteases, adhesins, and lipopolysaccharide, which are utilized to establish a colonization niche, modulate host defense and response, and impair host cell function. Thus, OMVs can be considered as a type of bacterial offensive weapon. This review discusses the entry mechanism of OMVs into host cells as well as their etiological roles in host-parasite interactions.
Infection and Immunity | 2009
Nobumichi Furuta; Kayoko Tsuda; Hiroko Omori; Tamotsu Yoshimori; Fuminobu Yoshimura; Atsuo Amano
ABSTRACT Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.
Infection and Immunity | 2009
Nobumichi Furuta; Hiroki Takeuchi; Atsuo Amano
ABSTRACT Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.
Oral Microbiology and Immunology | 2008
N. Makiura; Miki Ojima; Yurong Kou; Nobumichi Furuta; Nobuo Okahashi; Satoshi Shizukuishi; Atsuo Amano
INTRODUCTION The aim of this study was to assess the relationship between serum glycemic levels and subgingival microbial profile alteration following periodontal treatment in patients with type 2 diabetes mellitus. METHODS We studied 30 periodontitis patients with type 2 diabetes mellitus who received full-mouth subgingival debridement by analyzing their subgingival microbial profiles using a polymerase chain reaction method at baseline and various time-points for 12 months following treatment. Concurrently, probing pocket depth, bleeding on probing, and metabolic parameters, including glycated hemoglobin A1c (HbA1c), blood sugar level, C-reactive proteins, total cholesterol, triglyceride, and high-density and low-density lipoprotein cholesterol, were recorded. RESULTS Periodontal conditions were significantly improved after treatment, and the occurrence rates of periodontal bacterial species, including Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, and Prevotella intermedia, were also reduced. Interestingly, P. gingivalis was detected more frequently in subjects with increased HbA1c values after periodontal treatment than in those patients with decreased HbA1c values. Furthermore, P. gingivalis with type II fimbriae was detected only in HbA1c-increased subjects, while improvements in HbA1c values were observed only in subjects without type II clones. CONCLUSIONS These results suggest that glycemic level in diabetes is affected by the persistence of P. gingivalis, especially clones with type II fimbriae, in periodontal pockets.
Cellular Microbiology | 2011
Hiroki Takeuchi; Nobumichi Furuta; Ichijiro Morisaki; Atsuo Amano
Gingival epithelial cells function as an innate host defence system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well‐known periodontal pathogen, can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. However, it is poorly understood how this pathogen exits from infected cells for further transcellular spreading. The present study was performed to elucidate the cellular machinery exploited by P. gingivalis to exit from immortalized human gingival epithelial cells. P. gingivalis was shown to be internalized with early endosomes positive for the FYVE domain of EEA1 and transferrin receptor, and about half of the intracellular bacteria were then sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms were sorted to Rab11‐ and RalA‐positive recycling endosomes. Inhibition experiments revealed that bacterial exit was dependent on actin polymerization, lipid rafts and microtubule assembly. Dominant negative forms and RNAi knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturbed the exit of P. gingivalis. These results strongly suggest that the recycling pathway is exploited by intracellular P. gingivalis to exit from infected cells to neighbouring cells as a mechanism of cell‐to‐cell spreading.
Communicative & Integrative Biology | 2011
Hiroki Takeuchi; Nobumichi Furuta; Atsuo Amano
In the oral cavity, gingival epithelial cell (GEC) layers function as an innate host defense system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well-known periodontal pathogen, can enter GECs and pass through the epithelial barrier into deeper tissues. An intracellular location is considered advantageous for bacteria to escape from immune surveillance by the host as well as antibiotic pressure, leading to intracellular persistence, multiplication, and dissemination to adjacent tissues. P. gingivalis are invaginated by gingival epithelial cells via the endocytic pathway, and some intracellular bacteria are sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms are sorted to Rab11- and RalA-positive recycling endosomes, followed by bacterial exit from the cells. Exited bacteria can re-enter fresh cells. However, dominant negative forms and RNAi-knockdown of Rab11, RalA, and exocyst complex subunits (Sec5, Sec6, and Exo84) significantly disturb the exit of P. gingivalis. These are the first known results to show that the endocytic recycling pathway mediates bacterial exit from infected cells to neighboring cells and may provide important information regarding the exit mechanisms of various invasive pathogens.
Autophagy | 2010
Nobumichi Furuta; Tamotsu Yoshimori; Atsuo Amano
Autophagy functions to degrade intracellular foreign microbial invaders by a process that is termed xenophagy (antimicrobial autophagy). Xenophagosomes undergo a stepwise maturation process culminating in a fusion event with lysosomes, after which the cargos are degraded. Recent investigations by our laboratory demonstrate that endocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are involved in the fusion between xenophagosomes and lysosomes. Knockdown of the combinational SNARE proteins Vti1b and VAMP8 with siRNAs disturbs the colocalization of LC3 with LAMP-1. We also find that the invasive efficiency of group A Streptococcus into cells is not altered by knockdown of VAMP8 or Vti1b, whereas cellular bactericidal efficiency is significantly diminished, indicating that xenophagy is functionally impaired. In addition, knockdown of these SNAREs inhibits the fusion of canonical autophagosomes with lysosomes. Together, these findings indicate that VAMP8 and Vti1b mediate fusion with lysosomes in both antimicrobial and canonical autophagy.
Communicative & Integrative Biology | 2010
Nobumichi Furuta; Atsuo Amano
Autophagy is an intracellular bulk degradation/recycling system that turns over cellular constituents and also functions to degrade intracellular foreign microbial invaders by a process termed xenophagy (antimicrobial autophagy). We previously showed that intracellular group A Streptococcus (GAS) organisms are captured by xenophagosomes, then degraded following fusion with lysosomes. Very recently, we analyzed the molecular mechanism underlying xenophagosome/lysosome fusion and found that endocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are involved. Knockdown of the combinational SNARE proteins Vti1b and VAMP8 with siRNAs disturbed autophagic fusion with lysosomes, and cellular bactericidal efficiency was significantly diminished. Furthermore, knockdown of those SNAREs inhibited the fusion of canonical autophagosomes with lysosomes. In addition, important findings showed that Vti1b is derived from autophagic compartments, whereas VAMP8 originates from lysosomes. Together, these results strongly suggest that SNARE proteins Vti1b and VAMP8 mediate the fusion of antimicrobial and canonical autophagosomes with lysosomes, an essential event for autophagic degradation.