Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuo Kubota is active.

Publication


Featured researches published by Nobuo Kubota.


Life Sciences | 1999

PHARMACOLOGICAL CHARACTERIZATION OF DOPAMINE TRANSPORT IN CULTURED RAT ASTROCYTES

Masato Inazu; Nobuo Kubota; Hiroshi Takeda; Jun Zhang; Yuji Kiuchi; Katsuji Oguchi; Teruhiko Matsumiya

The effects of GBR-12909 (selective DA uptake inhibitor), zimelidine (selective 5-HT uptake inhibitor) and nisoxetine (selective NE uptake inhibitor) on the uptake of 30 nM [3H]DA into cultured rat astrocytes were examined. [3H]DA uptake was inhibited by approximately 50% by GBR-12909 or zimelidine in a concentration-dependent manner (100 nM to approximately 10 microM). Furthermore, the inhibition curves of GBR-12909 were biphasic, and uptake was completely inhibited by a high concentration of GBR-12909 (100 microM). [3H]DA uptake was also inhibited by approximately 50% by nisoxetine in a concentration-dependent manner (0.1 to approximately 100 nM), and nisoxetine was more potent than GBR-12909 or zimelidine. The inhibitory potencies were in the order nisoxetine > GBR-12909 > zimelidine. The uptake of [3H]DA under Na+-free conditions was approximately 50% of that under normal conditions. Thus, DA was taken up by both Na+-dependent and Na+-independent mechanisms. Nisoxetine (100 nM), zimelidine (100 microM) and GBR-12909 (10 microM) inhibited [3H]DA uptake into astrocytes only in the presence of Na+. On the other hand, this uptake was completely inhibited by a high concentration of GBR-12909 (100 microM) in the absence of Na+. The present data suggest that the Na+-dependent uptake of [3H]DA in cultured rat astrocytes may occur in the NE uptake system. Furthermore, astrocytes express the extraneuronal monoamine transporter (uptake2), which is an Na+-independent system, and this transporter is involved in the inactivation of centrally released DA.


Neuroscience Research | 1999

Regulation of dopamine uptake by basic fibroblast growth factor and epidermal growth factor in cultured rat astrocytes.

Masato Inazu; Hiroshi Takeda; Hideaki Ikoshi; Yoshihiro Uchida; Nobuo Kubota; Yuji Kiuchi; Katsuji Oguchi; Teruhiko Matsumiya

We examined the characteristics of dopamine (DA) uptake and its regulation by neurotrophic factors such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) in cultured rat astrocytes. In the presence of inhibitors of monoamine oxidase (MAO) and catechol-O-methyl-transferase (COMT), astrocytes took up DA by Na(+)-dependent and Na(+)-independent mechanisms that were sensitive to a reduction in temperature. The Na(+)-dependent and Na(+)-independent components increased linearly with increasing [3H]DA concentration (1-1000 microM), and showed no saturation. Na(+)-dependent DA uptake was significantly inhibited by ouabain, a Na(+)-K+ ATPase inhibitor. In bFGF-treated astrocytes, [3H]DA uptake increased in a time-dependent manner until 48 h, and declined after 72 h in both the presence and absence of Na+. In EGF-treated astrocytes, [3H]DA uptake increased in a time-dependent manner until 72 h in both the presence and absence of Na +. This enhancement of DA uptake induced by EGF or bFGF was significantly inhibited when the cells were cultured with actinomycin D, cycloheximide, or brefeldin A. Actinomycin D and brefeldin A also significantly inhibited the basal uptake of [3H]DA into astrocytes. These results suggest the existence of Na(+)-dependent and Na(+)-independent DA uptake in cultured rat astrocytes, and that EGF or bFGF might stimulate the expression and translocation of the extraneuronal DA transporter.


Bioorganic & Medicinal Chemistry | 2003

Novel diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter

Makoto Kimura; Tomoko Masuda; Koji Yamada; Masaki Mitani; Nobuo Kubota; Nobuyuki Kawakatsu; Kenichi Kishii; Masato Inazu; Yuji Kiuchi; Katsuji Oguchi; Takayuki Namiki

The novel diphenyl piperazine derivatives containing the phenyl substituted aminopropanol moiety, including 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 1, which were modified at the connective between the diphenyl and piperazine moieties, have been found to be potent dopamine uptake inhibitors. To study the further structure-activity relationship (SAR) of these compounds, a new series was synthesized, with modifications at the 2-hydroxy-3-phenylaminopropyl moiety of 1. The series was evaluated for dopamine transporter (DAT) binding affinity with [3H]GBR12935 in rat striatal membranes. Most of the compounds showed moderate to high DAT binding affinities and some were approximately equivalent in activity to compound 1 or GBR12909 as a dopamine uptake inhibitor, with IC(50) values of nanomolar range. The SAR suggested that on exhibiting a potent interaction with the DAT, there is probably a steric limitation around the benzene ring of the phenylamino moiety of 1, allowing only small-sized substituents with the exception of basic moieties at the 4-position. In addition, the SAR at the 3-amino-2-propanol moiety of 1 suggested that either the nitrogen atom with an electron donating substituent or the unsubstituted nitrogen atom and also the hydroxy group are desirable for elicitation of a potent DAT binding affinity.


Pharmacological Research | 2013

Functional expression of choline transporter-like protein 1 (CTL1) in small cell lung carcinoma cells: a target molecule for lung cancer therapy.

Masato Inazu; Tomoko Yamada; Nobuo Kubota; Tsuyoshi Yamanaka

Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in cancer cells. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. However, the uptake system for choline and the functional expression of choline transporters in lung cancer cells are poorly understood. We examined the molecular and functional characterization of choline uptake in the small cell lung carcinoma cell line NCI-H69. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na(+) from the uptake buffer strongly enhanced choline uptake. This increase in choline uptake under the Na(+)-free conditions was inhibited by dimethylamiloride (DMA), a Na(+)/H(+) exchanger (NHE) inhibitor. Various organic cations and the choline analog hemicholinium-3 (HC-3) inhibited the choline uptake and cell viability. A correlation analysis of the potencies of organic cations for the inhibition of choline uptake and cell viability showed a strong correlation (R=0.8077). RT-PCR revealed that choline transporter-like protein 1 (CTL1) mRNA and NHE1 are mainly expressed. HC-3 and CTL1 siRNA inhibited choline uptake and cell viability, and increased caspase-3/7 activity. The conversion of choline to ACh was confirmed, and this conversion was enhanced under Na(+)-free conditions, which in turn was sensitive to HC-3. These results indicate that choline uptake through CTL1 is used for ACh synthesis. Both an acetylcholinesterase inhibitor (eserine) and a butyrylcholinesterase inhibitor (ethopropazine) increased cell proliferation, and these effects were inhibited by 4-DAMP, a mAChR3 antagonist. We conclude that NCI-H69 cells express the choline transporter CTL1 which uses a directed H(+) gradient as a driving force, and its transport functions in co-operation with NHE1. This system primarily supplies choline for the synthesis of ACh and secretes ACh to act as an autocrine/paracrine growth factor, and the functional inhibition of CTL1 could promote apoptotic cell death. Identification of this new CTL1-mediated choline transport system provides a potential new target for therapeutic intervention.


Bioorganic & Medicinal Chemistry Letters | 2002

Novel diphenylalkyl piperazine derivatives with dual calcium antagonistic and antioxidative activities

Makoto Kimura; Tomoko Masuda; Koji Yamada; Nobuo Kubota; Nobuyuki Kawakatsu; Masaki Mitani; Kenichi Kishii; Masato Inazu; Takayuki Namiki

Two types of novel diphenylalkyl piperazine derivatives containing the thio or aminopropanol moiety substituted by phenyl or benzyl group were synthesized, and evaluated for their calcium antagonistic and antioxidative activities. These compounds showed apparent inhibitions against KCl-induced contractions in isolated rat aorta. Among them, phenylamino compound 9 and benzylamino compound 13 also possessed potent inhibitory activities against auto-oxidative lipid peroxidations in canine brain homogenates. Two representative compounds 3a and 9 were evaluated for their inhibitory activities against KCl-induced contractions in isolated canine arteries (basilar, coronary, mesenteric, and renal). Both compounds showed the most potent inhibitions to basilar artery.


Bioorganic & Medicinal Chemistry | 2003

Syntheses of novel diphenyl piperazine derivatives and their activities as inhibitors of dopamine uptake in the central nervous system

Makoto Kimura; Tomoko Masuda; Koji Yamada; Masaki Mitani; Nobuo Kubota; Nobuyuki Kawakatsu; Kenichi Kishii; Masato Inazu; Yuji Kiuchi; Katsuji Oguchi; Takayuki Namiki

A new series of diphenyl piperazine derivatives containing the phenyl substituted aminopropanol moiety, which were modified at sites between the diphenyl and piperazine moieties, was prepared and evaluated for dopamine transporter binding affinity with [(3)H]GBR12935 in rat striatal membranes. These synthesized compounds showed apparent dopamine transporter binding affinities (IC(50)<30 nM) and some of them were approximately equivalent in activity to GBR12909 known as a potent dopamine uptake inhibitor, showing the activities with IC(50) values of nanomolar range. Among them, 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 2 was evaluated for extracellular dopamine levels in rat striatum using in vivo brain microdialysis. The intraperitoneal administration of 2 (0.01, 0.03, or 0.1 mmol/kg) induced dose-dependent increases of dopamine levels in rat striatal dialysates. The maximum increases in dopamine levels induced by 2 were greater than those by GBR12909. The pharmacological data of these novel diphenyl piperazine derivatives show that the compounds have potent dopamine uptake inhibitory activities in the central nervous system.


Neurochemistry International | 2001

Methyl-4-phenylpyridinium (MPP+)-evoked dopamine release from rat striatal slices: possible roles of voltage-dependent calcium channels and reverse dopamine transport

Masato Inazu; Nobuo Kubota; Hiroshi Takeda; Katsuji Oguchi; Miwako Koizumi; Shuichi Kimura; Teruhiko Matsumiya

We examined the properties of voltage-dependent Ca(2+) channels (VDCCs) mediating 1-methyl-4-phenylpyridinium (MPP(+))-evoked [3H]DA release from rat striatal slices. In some cases, the Ca(2+)-independent efflux of neurotransmitters is mediated by the high-affinity neurotransmitter-uptake systems. To determine whether such a mechanism might be involved in MPP(+)-evoked [3H]DA release. MPP(+) (1,10 and 100 microM) evoked the release of [3H]DA from rat striatal slices in a concentration-dependent manner. In the absence of Ca(2+), MPP(+) (10 and 100 microM)-evoked [3H]DA release was significantly decreased to approximately 50% of control (a physiological concentration of Ca(2+)). In the presence of Ca(2+), nomifensine (0.1,1 and 10 microM) dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA. Nomifensine (1 and 10 microM) also dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA under Ca(2+)-free conditions. MPP(+)-evoked [3H]DA release was partly inhibited by nicardipine (1 and 10 microM), an L-type Ca(2+) channel blocker. On the other hand, the N-type Ca(2+) channel blocker omega-conotoxin-GVIA (omega-CTx-GVIA) (1 and 3 microM) did not affect this release. omega-agatoxin-IVA (omega-Aga-IVA) at low concentrations (0.1 microM), which are sufficient to block P-type Ca(2+) channels alone, also had no effect. On the other hand, MPP(+)-evoked [3H]DA release was significantly decreased by high concentrations of omega-Aga-IVA (0.3 microM) that would inhibit Q-type Ca(2+) channels. In addition, application of the Q-type Ca(2+) channel blocker omega-conotoxin-MVIIC (omega-CTx-MVIIC) (0.3 and 1 microM) also significantly inhibited MPP(+)-evoked [3H]DA release. These results suggest that MPP(+)-evoked [3H]DA release from rat striatal slices is largely mediated by Q-type Ca(2+) channels, and the Ca(2+)-independent component is mediated by reversal of the DA transport system.


Medical mycology journal | 2016

Distribution of Luliconazole in Nail Plate by In Vitro Permeation and Efficacy by Zone of Inhibition Test after Treatment of Luliconazole Nail Solution

Tsuyoshi Shimamura; Akiko Miyamae; Masakazu Arai; Aya Minemura; Akira Nozawa; Nobuo Kubota

To clarify the character of luliconazole nail solution we have developed, we investigated luliconazole distribution and antifungal activity in nail plate. An in vitro permeation study which measured luliconazole concentration of sliced nail in the transverse direction after treatment of luliconazole nail solution was conducted to investigate for concentration dependency and the influences of nail thickness and treatment duration. When 0.2, 1, 3, 5, and 7.5% luliconazole nail solutions were used, luliconazole was detected in the all the layers of nail and there was a concentration gradient from the dorsal side to deep nail layers. The luliconazole concentration was almost same after 14-day treatment with 5% luliconazole nail solution when using nails of different thicknesses. And we confirmed that concentration of luliconazole into the nail was increased depending on the treatment duration. In zone of inhibition test after 14-day treatment, 5% luliconazole nail solution showed statistically high formation rate of zones of inhibition compared to 8% ciclopirox nail lacquer. Above all, these data suggested that 5% luliconazole nail solution has the potential to show high therapeutic effect for onychomycosis.


Medical Mycology Journal | 2016

Antifungal Activity of Luliconazole Nail Solution on in vitro and in vivo Onychomycosis Model

Tsuyoshi Shimamura; Nami Hasegawa; Nobuo Kubota

We evaluated luliconazole nail solution, originally generated formulation, for the topical treatment of onychomycosis by two infection models. First, a suspension of Trichophyton mentagrophytes was dropped onto the ventral layer of human nail plate and these nails were set in Franz diffusion cells. After 9-day culture, luliconazole nail solutions (1, 3, and 5%) were applied to the dorsal surface of the nails once a day for 7 days. After application, fungal viability was assessed by measuring the ATP contents of the samples. The dose-dependent efficacy was confirmed, with 3% and 5% luliconazole nail solutions producing significantly lower ATP levels at 7-day treatment. When 3% and 5% luliconazole nail solutions were evaluated in a rabbit model of onychomycosis, both concentrations completely inhibited the recovery of fungi on culture after 4-week treatment. We therefore think these results indicate that 5% luliconazole nail solution is sufficiently potent for treatment of onychomycosis.


Neuroscience Research | 1997

242 Characterization of dopamine transport in rat astrocytes

Masato Inazu; Nobuo Kubota; Tomoko Masuda

Masato Inazu, Nobuo Kubota, Tomoko Masuda Present work studied the transport of DA in cultured rat astrocytes. In the presence of inhibitors of enzymes monoamine oxidase and catechol-O-methyl transferase, it was found that astrocytes took up DA by Na+-dependent and Na+-independent mechanism that was sensitive to a reduction of the temperature. The Na+-dependent component of this uptake was inhibited by DA uptake inhibitors, such as GBR-12909 or PR990608. It was also inhibited by NE uptake inhibitor, nisoxethine, and was more sensitive than GBR-12909 or PR-000608. DA, NE and 5-HT inhibited [3H]DA uptake into astrocytes with same concentration range. EGF or bFGF increased DA uptake in a time-dependent manner. This enhancement of DA uptake induced by EGF or bFGF was inhibited when the cells were cultured for 3 days with actinomycin D, cycloheximide or breferdin A. These result suggest that the existence of the neuronal and extraneuronal DA transporter in cultured rat astrocytes.

Collaboration


Dive into the Nobuo Kubota's collaboration.

Top Co-Authors

Avatar

Masato Inazu

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Yamada

College of Industrial Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Takeda

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Ikoshi

Tokyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge