Nobuo Maita
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobuo Maita.
Nature | 2005
Daichi Baba; Nobuo Maita; Jun Goo Jee; Yasuhiro Uchimura; Hisato Saitoh; Kaoru Sugasawa; Fumio Hanaoka; Hidehito Tochio; Hidekazu Hiroaki; Masahiro Shirakawa
Members of the small ubiquitin-like modifier (SUMO) family can be covalently attached to the lysine residue of a target protein through an enzymatic pathway similar to that used in ubiquitin conjugation, and are involved in various cellular events that do not rely on degradative signalling via the proteasome or lysosome. However, little is known about the molecular mechanisms of SUMO-modification-induced protein functional transfer. During DNA mismatch repair, SUMO conjugation of the uracil/thymine DNA glycosylase TDG promotes the release of TDG from the abasic (AP) site created after base excision, and coordinates its transfer to AP endonuclease 1, which catalyses the next step in the repair pathway. Here we report the crystal structure of the central region of human TDG conjugated to SUMO-1 at 2.1 Å resolution. The structure reveals a helix protruding from the protein surface, which presumably interferes with the product DNA and thus promotes the dissociation of TDG from the DNA molecule. This helix is formed by covalent and non-covalent contacts between TDG and SUMO-1. The non-covalent contacts are also essential for release from the product DNA, as verified by mutagenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Takao Hashiguchi; Mizuho Kajikawa; Nobuo Maita; Makoto Takeda; Kimiko Kuroki; Kaori Sasaki; Daisuke Kohda; Yusuke Yanagi; Katsumi Maenaka
Measles still remains a major cause of childhood morbidity and mortality worldwide. Measles virus (MV) vaccines are highly successful, but the mechanism underlying their efficacy has been unclear. Here we report the crystal structure of the MV attachment protein, hemagglutinin, responsible for MV entry. The receptor-binding head domain exhibits a cubic-shaped β-propeller structure and forms a homodimer. N-linked sugars appear to mask the broad regions and cause the two molecules forming the dimer to tilt oppositely toward the horizontal plane. Accordingly, residues of the putative receptor-binding site, highly conserved among MV strains, are strategically positioned in the unshielded area of the protein. These conserved residues also serve as epitopes for neutralizing antibodies, ensuring the serological monotype, a basis for effective MV vaccines. Our findings suggest that sugar moieties in the MV hemagglutinin critically modulate virus–receptor interaction as well as antiviral antibody responses, differently from sugars of the HIV gp120, which allow for immune evasion.
The EMBO Journal | 2008
Mayumi Igura; Nobuo Maita; Jun Kamishikiryo; Masaki Yamada; Takayuki Obita; Katsumi Maenaka; Daisuke Kohda
Asn‐glycosylation is widespread not only in eukaryotes but also in archaea and some eubacteria. Oligosaccharyltransferase (OST) catalyzes the co‐translational transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. Here, we report that a thermophilic archaeon, Pyrococcus furiosus OST is composed of the STT3 protein alone, and catalyzes the transfer of a heptasaccharide, containing one hexouronate and two pentose residues, onto peptides in an Asn‐X‐Thr/Ser‐motif‐dependent manner. We also determined the 2.7‐Å resolution crystal structure of the C‐terminal soluble domain of Pyrococcus STT3. The structure‐based multiple sequence alignment revealed a new motif, DxxK, which is adjacent to the well‐conserved WWDYG motif in the tertiary structure. The mutagenesis of the DK motif residues in yeast STT3 revealed the essential role of the motif in the catalytic activity. The function of this motif may be related to the binding of the pyrophosphate group of lipid‐linked oligosaccharide donors through a transiently bound cation. Our structure provides the first structural insights into the formation of the oligosaccharide–asparagine bond.
Nature Structural & Molecular Biology | 2011
Takao Hashiguchi; Toyoyuki Ose; Marie Kubota; Nobuo Maita; Jun Kamishikiryo; Katsumi Maenaka; Yusuke Yanagi
Measles virus, a major cause of childhood morbidity and mortality worldwide, predominantly infects immune cells using signaling lymphocyte activation molecule (SLAM) as a cellular receptor. Here we present crystal structures of measles virus hemagglutinin (MV-H), the receptor-binding glycoprotein, in complex with SLAM. The MV-H head domain binds to a β-sheet of the membrane-distal ectodomain of SLAM using the side of its β-propeller fold. This is distinct from attachment proteins of other paramyxoviruses that bind receptors using the top of their β-propeller. The structure provides templates for antiviral drug design, an explanation for the effectiveness of the measles virus vaccine, and a model of the homophilic SLAM-SLAM interaction involved in immune modulations. Notably, the crystal structures obtained show two forms of the MV-H–SLAM tetrameric assembly (dimer of dimers), which may have implications for the mechanism of fusion triggering.
Journal of Biological Chemistry | 2002
Toshiyuki Shimizu; Azusa Seto; Nobuo Maita; Keisuke Hamada; Shoichiro Tsukita; Sachiko Tsukita; Toshio Hakoshima
Neurofibromatosis type 2 (NF2) is a dominantly inherited disease associated with the central nervous system. The NF2 gene product merlin is a tumor suppressor, and its mutation or inactivation causes this disease. We report here the crystal structure of the merlin FERM domain containing a 22-residue α-helical segment. The structure reveals that the merlin FERM domain consists of three subdomains displaying notable features of the electrostatic surface potentials, although the overall surface potentials similar to those of ezrin/radixin/moesin (ERM) proteins indicate electrostatic membrane association. The structure also is consistent with inactivation mechanisms caused by the pathogenic mutations associated with NF2.
Journal of Biological Chemistry | 2010
Nobuo Maita; James Nyirenda; Mayumi Igura; Jun Kamishikiryo; Daisuke Kohda
Oligosaccharyltransferase (OST) catalyzes the transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. In the bacterium Campylobacter jejuni, a single-subunit membrane protein, PglB, catalyzes N-glycosylation. We report the 2.8 Å resolution crystal structure of the C-terminal globular domain of PglB and its comparison with the previously determined structure from the archaeon Pyrococcus AglB. The two distantly related oligosaccharyltransferases share unexpected structural similarity beyond that expected from the sequence comparison. The common architecture of the putative catalytic sites revealed a new catalytic motif in PglB. Site-directed mutagenesis analyses confirmed the contribution of this motif to the catalytic function. Bacterial PglB and archaeal AglB constitute a protein family of the catalytic subunit of OST along with STT3 from eukaryotes. A structure-aided multiple sequence alignment of the STT3/PglB/AglB protein family revealed three types of OST catalytic centers. This novel classification will provide a useful framework for understanding the enzymatic properties of the OST enzymes from Eukarya, Archaea, and Bacteria.
Journal of Biological Chemistry | 2003
Nobuo Maita; Kenji Nishio; Etsuko Nishimoto; Taei Matsui; Yasuo Shikamoto; Takashi Morita; J. Evan Sadler; Hiroshi Mizuno
Bitiscetin, a platelet adhesion inducer isolated from venom of the snake Bitis arietans, activates the binding of the von Willebrand factor (VWF) A1 domain to glycoprotein Ib (GPIb) in vitro. This activation requires the formation of a bitiscetin-VWF A1 complex, suggesting an allosteric mechanism of action. Here, we report the crystal structure of bitiscetin-VWF A1 domain complex solved at 2.85 Å. In the complex structure, helix α5 of VWF A1 domain lies on a concave depression on bitiscetin, and binding sites are located at both ends of the depression. The binding sites correspond well with those proposed previously based on alanine-scanning mutagenesis (Matsui, T., Hamako, J., Matsushita, T., Nakayama, T., Fujimura, Y., and Titani, K. (2002) Biochemistry 41, 7939–7946). Against our expectations, the structure of the VWF A1 domain bound to bitiscetin does not differ significantly from the structure of the free A1 domain. These results are similar to the case of botrocetin, another snake-derived inducer of platelet aggregation, although the binding modes of botrocetin and bitiscetin are different. The modeled structure of the ternary bitiscetin-VWF A1-GPIb complex suggests that an electropositive surface of bitiscetin may interact with a favorably positioned anionic region of GPIb. These results suggest that snake venom proteins induce VWF A1-GPIbα binding by interacting with both proteins, and not by causing conformational changes in VWF A1.
Journal of Biological Chemistry | 2004
Kumiko Shiozawa; Nobuo Maita; Kentaro Tomii; Azusa Seto; Natsuko Goda; Yutaka Akiyama; Toshiyuki Shimizu; Masahiro Shirakawa; Hidekazu Hiroaki
Peroxisomes are responsible for several pathways in primary metabolism, including β-oxidation and lipid biosynthesis. PEX1 and PEX6 are hexameric AAA-type ATPases, both of which are indispensable in targeting over 50 peroxisomal resident proteins from the cytosol to the peroxisomes. Although the tandem AAA-ATPase domains in the central region of PEX1 and PEX6 are highly similar, the N-terminal sequences are unique. To better understand the distinct molecular function of these two proteins, we analyzed the unique N-terminal domain (NTD) of PEX1. Extensive computational analysis revealed weak similarity (<10% identity) of PEX1 NTD to the N-terminal domains of other membrane-related type II AAA-ATPases, such as VCP (p97) and NSF. We have determined the crystal structure of mouse PEX1 NTD at 2.05-Å resolution, which clearly demonstrated that the domain belongs to the double-ψ-barrel fold family found in the other AAA-ATPases. The N-domains of both VCP and NSF are structural neighbors of PEX1 NTD with a 2.7- and 2.1-Å root mean square deviation of backbone atoms, respectively. Our findings suggest that the supradomain architecture, which is composed of a single N-terminal domain followed by tandem AAA domains, is a common feature of organellar membrane-associating AAA-ATPases. We propose that PEX1 functions as a protein unfoldase in peroxisomal biogenesis, using its N-terminal putative adaptor-binding domain.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Nobuo Maita; Kengo Okada; Kazuyuki Hatakeyama; Toshio Hakoshima
In the presence of phenylalanine, GTP cyclohydrolase I feedback regulatory protein (GFRP) forms a stimulatory 360-kDa complex with GTP cyclohydrolase I (GTPCHI), which is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. The crystal structure of the stimulatory complex reveals that the GTPCHI decamer is sandwiched by two GFRP homopentamers. Each GFRP pentamer forms a symmetrical five-membered ring similar to β-propeller. Five phenylalanine molecules are buried inside each interface between GFRP and GTPCHI, thus enhancing the binding of these proteins. The complex structure suggests that phenylalanine-induced GTPCHI⋅GFRP complex formation enhances GTPCHI activity by locking the enzyme in the active state.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nobuo Maita; Takahiro Tsukimura; Takako Taniguchi; Seiji Saito; Kazuki Ohno; Hisaaki Taniguchi; Hitoshi Sakuraba
N-glycosylation is a major posttranslational modification that endows proteins with various functions. It is established that N-glycans are essential for the correct folding and stability of some enzymes; however, the actual effects of N-glycans on their activities are poorly understood. Here, we show that human α-l-iduronidase (hIDUA), of which a dysfunction causes accumulation of dermatan/heparan sulfate leading to mucopolysaccharidosis type I, uses its own N-glycan as a substrate binding and catalytic module. Structural analysis revealed that the mannose residue of the N-glycan attached to N372 constituted a part of the substrate-binding pocket and interacted directly with a substrate. A deglycosylation study showed that enzyme activity was highly correlated with the N-glycan attached to N372. The kinetics of native and deglycosylated hIDUA suggested that the N-glycan is also involved in catalytic processes. Our study demonstrates a previously unrecognized function of N-glycans.