Nobuo Okado
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobuo Okado.
Nature Neuroscience | 2002
Kenichi Inoue; Shigeru Ozaki; Takashi Shiga; Kosei Ito; Tomoyuki Masuda; Nobuo Okado; Tsutomu Iseda; Saburo Kawaguchi; Masaharu Ogawa; Suk-Chul Bae; Namiko Yamashita; Shigeyoshi Itohara; Norio Kudo; Yoshiaki Ito
Dorsal root ganglion (DRG) neurons specifically project axons to central and peripheral targets according to their sensory modality. The Runt-related genes Runx1 and Runx3 are expressed in DRG neuronal subpopulations, suggesting that they may regulate the trajectories of specific axons. Here we report that Runx3-deficient (Runx3−/−) mice displayed severe motor discoordination and that few DRG neurons synthesized the proprioceptive neuronal marker parvalbumin. Proprioceptive afferent axons failed to project to their targets in the spinal cord as well as those in the muscle. NT-3-responsive Runx3−/− DRG neurons showed less neurite outgrowth in vitro. However, we found no changes in the fate specification of Runx3−/− DRG neurons or in the number of DRG neurons that expressed trkC. Our data demonstrate that Runx3 is critical in regulating the axonal projections of a specific subpopulation of DRG neurons.
International Journal of Developmental Neuroscience | 1998
Aska Hayashi; Masaaki Nagaoka; Kazuo Yamada; Yukio Ichitani; Yoshiaki Miake; Nobuo Okado
Mild prenatal stress affects the serotonergic system in the hippocampus of rat offspring. Pregnant rats were daily exposed to mild stress treatments (consisting of crowding and saline injection) during days 15 to 21 of pregnancy. Their offspring were assessed by a series of biochemical, histological and behavioral tests. On 35 days after birth, 5‐hydroxytryptamine (5‐HT) level was decreased by 17% (P < 0.05), whereas 5‐hydroxyindolacetic acid (5‐HIAA) level was increased by 18% (P < 0.05) in the offspring of prenatally stressed rats. The metabolic rate (5‐HIAA/5‐HT) was increased by 49% (P < 0.01). Synaptic density in the hippocampus of prenatally stressed offspring was also decreased by 32% (P < 0.0001) on postnatal day 35. There was no significant group difference in the spatial learning acquisition test of the Morris water maze ; however, in the reversal task, prenatally stressed 5‐week old rats spent more time than control animals searching for the platform of the pool. Escape latency in the cued test showed no significant difference. Together with data in our previous studies, that have shown 5‐HT to facilitate synapse formation and maintenance in the central nervous system, synaptic loss is suggested to occur in relation to changes of 5‐HT system in the hippocampus of prenatally stressed offspring. This may be associated with reported changes in behavior and learning ability in prenatally stressed offspring.
Pediatrics | 2001
Naoko Narita; Masaaki Narita; Sachio Takashima; Masahiro Nakayama; Toshiro Nagai; Nobuo Okado
Objective. Serotonin (5-HT) in the nervous system is a major factor in facilitation of the brain center for respiration. Variations in the promoter region of the 5-HT transporter (5-HTT) gene have been shown to potentially regulate 5-HT activity in the brain. Therefore, we aimed to identify the possibility that specific allele variants of the 5-HTT gene can be found as a genetic background for sudden infant death syndrome (SIDS). Methods. Polymorphisms in the 5′ regulatory region of the 5-HTT gene were determined in genomic DNA obtained from 27 SIDS victims and 115 age-matched health control participants. Results. There were significant differences in genotype distribution and allele frequency of the 5-HTT promoter gene between SIDS victims and age-matched control participants. The L and XL alleles were more frequently found in SIDS victims than in age-matched control participants. Conclusion. Efficiency in the transportation of 5-HTT with the L allele is known to be higher than that with the S allele. The excitatory function by 5-HT is considered to be lower in the respiratory center of individuals with the L allele compared with those with S allele. The XL allele variant has shown another novel biological risk factor for SIDS.
Experimental Brain Research | 1991
Yasuhiko Hosoya; Y. Sugiura; Nobuo Okado; A. D. Loewy; Kunio Kohno
SummaryThe descending projection of the hypothalamic paraventricular nucleus (PVN) to the sympathetic preganglionic neurons (SPNs) in the upper thoracic cord of the rat was studied. PVN-fibers were labeled by anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L), while SPNs were retrogradely labeled with cholera toxin subunit B (CTb) which was injected into the superior cervical ganglion. SPNs labeled with CTb were mainly observed in the nucleus intermediolateralis (IML) pars principalis and pars funicularis, and a small number of them were in the nucleus intercalatus (IC) and central autonomic nucleus (CA). SPNs found in the IML had dendrites that projected in various directions. Five types of dendritic projections were noted: medial, rostral, caudal, lateral (including dorsolateral) and ventral. Longitudinal dendritic bundles interconnected each cell cluster in the IML. Medial dendrites of the IML, together with dendrites of the IC and CA, formed transverse dendritic bundles extending from the IML to the central canal. The transverse dendritic bundles disentangled near the midline and formed a loose dendritic plexus in the region just dorsal to the central canal. PVN-fibers labeled with PHA-L were observed primarily in lamina I and intermediate gray (lamina VII). Although varicose PVN-fibers and SPNs coexisted in the IML, the tight packing of the dendritic bundles prevented any clear demonstration of direct contacts between them. On the other hand, PVN-fibers were occasionally found to appose and wind around the primary or secondary dendrites of some SPNs of the CA and IC. These dendrites were studded with varicosities of PVN-fibers for a short length, and terminal boutons of PVN-fibers were also seen to make contact directly with the dendrites. The results of this study substantiated a direct connection between the PVN and SPNs, using a combination of immunohistochemical techniques for PHA-L and CTb. The possible involvement of a direct pathway from the PVN to SPNs in cardiovascular regulation is discussed.
Pediatric Research | 2002
Naoko Narita; Michiko Kato; Mami Tazoe; Kaoru Miyazaki; Masaaki Narita; Nobuo Okado
Autism is defined as a congenital neurodevelopmental disorder in which serotonergic dysfunction may be involved in its pathogenesis. One of the characteristic laboratory findings in autistic patients is hyperserotonemia, although its mechanism has not been elucidated to date because of difficulties in studying human patients. Recent reports have demonstrated that thalidomide or valproic acid exposure during early embryonic days (first trimester) in humans causes higher incidence of autism. Morphologic abnormalities found in autism (e.g. cerebellar anomalies, reduced motor neuron numbers) have been reported in animals administered with these teratogens prenatally, suggesting the possibility of the use of these animals as an experimental autistic model. In this study, we evaluated monoamine levels in the brain and blood of rats exposed to teratogens prenatally. Of the groups exposed to thalidomide on embryonic day (E)2, E4, E7, E9, and E11, a significant increase of hippocampal serotonin was only observed in the group exposed on E9. Furthermore, E9 thalidomide and valproic acid exposure both resulted in an increase of hippocampal serotonin, frontal cortex dopamine, and hyperserotonemia. These results thus indicate that two potentially autism-inducing teratogens, thalidomide and valproic acid, have the same effect on early monoamine system development in the brain and the blood, which may explain the pathogenesis of autism.
Brain & Development | 2004
Kaoru Miyazaki; Naoko Narita; Ryoichi Sakuta; Tomoko Miyahara; Hiroshi Naruse; Nobuo Okado; Masaaki Narita
To evaluate the availability of the serum neurotrophins for the diagnosis of the patients with neurodevelopmental disorder, we measured the serum concentration of brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) in the patients diagnosed with autism (n=18) and mental retardation (n=20), or healthy controls (n=16), using enzyme-linked immunosorbent assay. There tended to be a higher concentration of serum BDNF found in the autistic group ( P <0.05 by analysis of variance (ANOVA)) and the mental retardation group ( P <0.001 by ANOVA) compared to the control group. Serum NT-4 concentration tended to be increased in the mental retardation group (P <0.05 by ANOVA). We conclude that measuring the serum concentration of two neurotrophins, BDNF and NT-4, might be helpful to diagnose or classify disorders such as autism or mental retardation.
Neuroscience | 1982
Matsuo Matsushita; Michiko Ikeda; Nobuo Okado
Using the retrograde horseradish peroxidase technique, we have examined the distribution of labeled thalamic-, spinal- and cerebellar-projecting neurons in the trigeminal sensory nuclei of the cat. Injections into the nucleus ventralis posterior of the thalamus resulted in labeling of neurons in lamina I (subnucleus zonalis), the deeper part of lamina IV (the subnucleus magnocellularis) of the nucleus caudalis and in lamina V (the lateral extension of the nucleus medullae oblongatae centralis) on the contralateral side. A very large number of labeled small neurons were observed mainly in the caudal part of the nucleus interpolaris and in the ventral division of the principal sensory nucleus on the contralateral side and in the dorsal division of the principal sensory nucleus on the ipsilateral side. Injections into the known projection areas of the cerebellar cortex labeled mainly ipsilaterally the trigeminocerebellar neurons in a restricted ventrolateral area of lamina IV of the nucleus caudalis at its rostral level and in lamina V. Many labeled neurons were also observed in the nucleus interpolaris. Although the distribution overlapped with that of the trigeminothalamic neurons, the greatest majority were concentrated in its rostral part where the trigeminothalamic neurons were very small in number. In addition, labeled neurons were observed in the rostral part of the nucleus oralis and the ventralmost part of the ventral division of the principal sensory nucleus. No labeled neurons were observed in the dorsal division of the principal sensory nucleus and the mesencephalic nucleus. The trigeminospinal neurons were labeled mainly ipsilaterally following injections into the upper cervical cord. They were located in laminae I and III, the deeper part of lamina IV of the nucleus caudalis and in lamina V. Only scattered labeled neurons were found in the nucleus interpolaris. The number of labeled neurons increased in the nucleus oralis at the level of the superior olive. They tended to be distributed around or dorsal to the group of the trigeminothalamic neurons at the caudal part of the principal sensory nucleus. No neurons of the principal sensory nucleus appeared to project to the spinal cord. Based on the large size and location, the trigeminospinal neurons could be differentiated from the other projection neurons in the nucleus oralis. The present study demonstrates that the trigeminal sensory nuclei are composed of groups of neurons with different projections, since the main aggregations are localized at different levels. However, it should be examined whether the neuronal groups, which are labeled from the different structures in similar locations, are composed of individual neurons projecting to more than one of these structures.
Molecular Brain Research | 1998
Shun Hamada; Kouji Senzaki; Kayoko Hamaguchi-Hamada; Katsuhiko Tabuchi; Hideko Yamamoto; Toshifumi Yamamoto; Shingo Yoshikawa; Hideyuki Okano; Nobuo Okado
Serotonin 2A receptor (5-HT2A receptor) is widely distributed in the central nervous system, and has been suggested to be involved in a variety of behavioral conditions and neuropsychiatric disorders. Two polyclonal antibodies were raised against the N-terminus peptide of rat 5-HT2A receptor in chickens (5-HT2A-N) and a glutathione S-transferase fusion protein that contained the C-terminus of the mouse 5-HT2A receptor in rabbits (5-HT2A-C). Affinity-purified 5-HT2A-N and -C antibodies reacted strongly with a single band of 77-78 kDa in postsynaptic density proteins prepared from the rat cortex. The distribution pattern of immunoreactive structures in the rat brain was virtually the same for the two antibodies. The highest levels of immunoreactivity were observed in the olfactory bulb, neocortex, claustrum, piriform cortex, mamillary bodies, pontine nuclei, red nucleus and cranial motor nuclei. In the olfactory bulb, mitral cells were intensely labeled. In the neocortex, many immunoreactive neurons were found in layers II-VI. In layer IV of the neocortex, strong neuropil labeling was observed. In a double-labeling study using chicken 5-HT2A-N and rabbit anti-glial fibrillary acidic protein (GFAP) antibody, a considerable number of GFAP positive cells also showed 5-HT2A immunoreactivity. By using an immunoelectron microscopic technique, 5-HT2A receptor immunoreaction was shown to be localized just beneath the postsynaptic membrane thickening of asymmetric synapses.
Brain Research | 2001
Hiromi Sakata-Haga; Mizuki Kanemoto; Daisuke Maruyama; Koich Hoshi; Koich Mogi; Masaaki Narita; Nobuo Okado; Yayoi Ikeda; Yoshihiro Fukui; Itaru Kojima; Jun Takeda; Setsuji Hisano
We studied by immunohistochemistry the distribution of differentiation-associated sodium-dependent inorganic phosphate (Pi) cotransporter (DNPI) in the rat forebrain, in comparison with brain-specific cotransporter (BNPI). DNPI-staining was principally seen in axonal synaptic terminals which showed a widespread but discrete pattern of distribution different from that of the BNPI-staining. In the diencephalon, marked DNPI-staining was seen in the dorsal lateral geniculate, medial geniculate, ventral posterolateral, ventral posteromedial, anterior, and reticular thalamic nuclei without the colocalization with BNPI-staining. DNPI-staining showed a strong mosaical pattern and overlapped well the BNPI-staining in the medial habenular nucleus. DNPI-staining was moderate over the hypothalamus and notably localized in neurosecretory terminals containing corticotropin-releasing hormone in the median eminence. In contrast, the BNPI-staining was region-related and strong in the ventromedial and mammillary nuclei. In the telencephalon, laminar DNPI-staining was seen over the neocortex, corresponding to the thalamocortical termination, and also found in the retrosplenial cortex and the striatum, with the highest intensity in the accumbens nucleus shell. The present results suggest that DNPI serves as a dominant Pi transport system in synaptic terminals of diencephalic neurons including thalamocortical and thalamostriatal pathways as well as the hypothalamic neuroendocrine system in the rat forebrain.
Neuroscience | 2005
H. Ishiwata; T. Shiga; Nobuo Okado
Prenatal stress has long-lasting effects on cognitive function and on the hypothalamic-pituitary-adrenal response to stress. We previously reported that the serotonin concentration and synaptic density in the hippocampus were reduced following prenatal stress [Int J Dev Neurosci 16 (1998) 209]. Since serotonin plays a role in the formation and maintenance of synapses, we hypothesized that a neonatal reduction in hippocampal serotonin levels may lead to learning disabilities in prenatally stressed mice. To test this hypothesis, we treated prenatally stressed mice with a selective serotonin reuptake inhibitor in order to normalize their postnatal serotonin turnover levels. What we found was that the oral administration of a selective serotonin reuptake inhibitor to prenatally stressed mice during postnatal weeks 1-3 but not 6-8 normalized their corticosterone response to stress, serotonin turnover in the hippocampus, and density of dendritic spines and synapses in the hippocampal CA3 region. Concomitantly, such treatment partially restored their ability to learn spatial information.