Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuo Sasaki is active.

Publication


Featured researches published by Nobuo Sasaki.


Cell Stem Cell | 2013

Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients

Gerald Schwank; Bon-Kyoung Koo; Valentina Sasselli; Johanna F. Dekkers; Inha Heo; Turan Demircan; Nobuo Sasaki; Sander Boymans; Edwin Cuppen; Cornelis K. van der Ent; Edward E. S. Nieuwenhuis; Jeffrey M. Beekman; Hans Clevers

Single murine and human intestinal stem cells can be expanded in culture over long time periods as genetically and phenotypically stable epithelial organoids. Increased cAMP levels induce rapid swelling of such organoids by opening the cystic fibrosis transmembrane conductor receptor (CFTR). This response is lost in organoids derived from cystic fibrosis (CF) patients. Here we use the CRISPR/Cas9 genome editing system to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients. The corrected allele is expressed and fully functional as measured in clonally expanded organoids. This study provides proof of concept for gene correction by homologous recombination in primary adult stem cells derived from patients with a single-gene hereditary defect.


Nature | 2013

In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration

Meritxell Huch; Craig Dorrell; Sylvia F. Boj; Johan H. van Es; Vivian Li; Marc van de Wetering; Toshiro Sato; Karien Hamer; Nobuo Sasaki; Milton J. Finegold; Annelise Haft; Robert G. Vries; Markus Grompe; Hans Clevers

The Wnt target gene Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5) marks actively dividing stem cells in Wnt-driven, self-renewing tissues such as small intestine and colon, stomach and hair follicles. A three-dimensional culture system allows long-term clonal expansion of single Lgr5+ stem cells into transplantable organoids (budding cysts) that retain many characteristics of the original epithelial architecture. A crucial component of the culture medium is the Wnt agonist RSPO1, the recently discovered ligand of LGR5. Here we show that Lgr5-lacZ is not expressed in healthy adult liver, however, small Lgr5-LacZ+ cells appear near bile ducts upon damage, coinciding with robust activation of Wnt signalling. As shown by mouse lineage tracing using a new Lgr5-IRES-creERT2 knock-in allele, damage-induced Lgr5+ cells generate hepatocytes and bile ducts in vivo. Single Lgr5+ cells from damaged mouse liver can be clonally expanded as organoids in Rspo1-based culture medium over several months. Such clonal organoids can be induced to differentiate in vitro and to generate functional hepatocytes upon transplantation into Fah−/− mice. These findings indicate that previous observations concerning Lgr5+ stem cells in actively self-renewing tissues can also be extended to damage-induced stem cells in a tissue with a low rate of spontaneous proliferation.


Nature Cell Biology | 2012

Dll1+ secretory progenitor cells revert to stem cells upon crypt damage

Johan H. van Es; Toshiro Sato; Marc van de Wetering; Anna Lyubimova; Annie Ng Yee Nee; Alex Gregorieff; Nobuo Sasaki; Laura Zeinstra; Maaike van den Born; Jeroen Korving; Anton Martens; Nick Barker; Alexander van Oudenaarden; Hans Clevers

Lgr5+ intestinal stem cells generate enterocytes and secretory cells. Secretory lineage commitment requires Notch silencing. The Notch ligand Dll1 is expressed by a subset of immediate stem cell daughters. Lineage tracing in Dll1GFP–ires–CreERT2 knock-in mice reveals that single Dll1high cells generate small, short-lived clones containing all four secretory cell types. Lineage specification thus occurs in immediate stem cell daughters through Notch lateral inhibition. Cultured Dll1high cells form long-lived organoids (mini-guts) on brief Wnt3A exposure. When Dll1high cells are genetically marked before tissue damage, stem cell tracing events occur. Thus, secretory progenitors exhibit plasticity by regaining stemness on damage.


Nature | 2015

Single-cell messenger RNA sequencing reveals rare intestinal cell types

Dominic Grün; Anna Lyubimova; Lennart Kester; Kay Wiebrands; Onur Basak; Nobuo Sasaki; Hans Clevers; Alexander van Oudenaarden

Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating subpopulations of cells are based on messenger RNA or protein expression of only a few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumour cells, is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we first sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbour stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone-producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. RaceID confirmed the existence of known enteroendocrine lineages, and moreover discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID we then applied the algorithm to ex vivo-isolated Lgr5-positive stem cells and their direct progeny. We find that Lgr5-positive cells represent a homogenous abundant population of stem cells mixed with a rare population of Lgr5-positive secretory cells. We envision broad applicability of our method for discovering rare cell types and the corresponding marker genes in healthy and diseased organs.


Cell | 2015

Long-term culture of genome-stable bipotent stem cells from adult human liver

Meritxell Huch; Helmuth Gehart; Ruben van Boxtel; Karien Hamer; Francis Blokzijl; Monique M.A. Verstegen; Ewa Ellis; Martien van Wenum; Sabine A. Fuchs; Joep de Ligt; Marc van de Wetering; Nobuo Sasaki; Susanne J. Boers; Hans Kemperman; Jeroen de Jonge; Jan N. M. IJzermans; Edward E. S. Nieuwenhuis; Ruurdtje Hoekstra; Stephen C. Strom; Robert G. Vries; Luc J. W. van der Laan; Edwin Cuppen; Hans Clevers

Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy.


Nature | 2016

Tissue-specific mutation accumulation in human adult stem cells during life

Francis Blokzijl; Joep de Ligt; Myrthe Jager; Valentina Sasselli; Sophie Roerink; Nobuo Sasaki; Meritxell Huch; Sander Boymans; Ewart W. Kuijk; Pjotr Prins; Isaac J. Nijman; Inigo Martincorena; Michal Mokry; Caroline L. Wiegerinck; Sabine Middendorp; Toshiro Sato; Gerald Schwank; Edward E. S. Nieuwenhuis; Monique M.A. Verstegen; Luc J. W. van der Laan; Jeroen de Jonge; Jan N. M. IJzermans; Robert G. Vries; Marc van de Wetering; Michael R. Stratton; Hans Clevers; Edwin Cuppen; Ruben van Boxtel

The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon

Nobuo Sasaki; Norman Sachs; Kay Wiebrands; Saskia I. J. Ellenbroek; Arianna Fumagalli; Anna Lyubimova; Harry Begthel; Maaike van den Born; Johan H. van Es; Wouter R. Karthaus; Vivian Li; Peter J. Peters; Jacco van Rheenen; Alexander van Oudenaarden; Hans Clevers

Significance Stem cells crucially depend on their complex microenvironment, also called niche. The niche is defined as an anatomic site, consisting of specialized niche cells. These niche cells anchor stem cells and provide the stem cells with physical protection and essential growth and maintenance signals. In the murine small intestinal crypts, Paneth cells constitute an important part of cellular niche for Lgr5+ stem cells with which they are intermingled. Paneth cells provide molecules such as Wnt3, EGF, and Notch ligands to maintain intestinal stem cell. There exists no typical Paneth cell in the colon. Here, we show that Reg4-expressing deep crypt secretory cells function as the colon equivalent of Paneth cells. Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5+) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5+ stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. DCS cells can be massively produced from Lgr5+ colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche.


PLOS ONE | 2013

Generation of BAC Transgenic Epithelial Organoids

Gerald Schwank; Amanda Andersson-Rolf; Bon-Kyoung Koo; Nobuo Sasaki; Hans Clevers

Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of these ex vivo cultures is their accessibility to live imaging. So far the establishment of transgenic fluorescent reporter organoids has required the generation of transgenic mice, a laborious and time-consuming process, which cannot be extended to human cultures. Here we present a transfection protocol that enables the generation of recombinant mouse and human reporter organoids using BAC (bacterial artificial chromosome) technology.


Nature | 2018

Intra-tumour diversification in colorectal cancer at the single-cell level

Sophie Roerink; Nobuo Sasaki; Henry Lee-Six; Matthew Young; Ludmil B. Alexandrov; Sam Behjati; Thomas J. Mitchell; Sebastian Grossmann; Howard Lightfoot; David A. Egan; A. Pronk; Niels Smakman; Joost van Gorp; Elizabeth Anderson; Stephen Gamble; Chris Alder; Marc van de Wetering; Peter J. Campbell; Michael R. Stratton; Hans Clevers

Every cancer originates from a single cell. During expansion of the neoplastic cell population, individual cells acquire genetic and phenotypic differences from each other. Here, to investigate the nature and extent of intra-tumour diversification, we characterized organoids derived from multiple single cells from three colorectal cancers as well as from adjacent normal intestinal crypts. Colorectal cancer cells showed extensive mutational diversification and carried several times more somatic mutations than normal colorectal cells. Most mutations were acquired during the final dominant clonal expansion of the cancer and resulted from mutational processes that are absent from normal colorectal cells. Intra-tumour diversification of DNA methylation and transcriptome states also occurred; these alterations were cell-autonomous, stable, and followed the phylogenetic tree of each cancer. There were marked differences in responses to anticancer drugs between even closely related cells of the same tumour. The results indicate that colorectal cancer cells experience substantial increases in somatic mutation rate compared to normal colorectal cells, and that genetic diversification of each cancer is accompanied by pervasive, stable and inherited differences in the biological states of individual cancer cells.Organoids derived from individual cells from colorectal cancers and adjacent normal tissue are used to investigate intra-tumour diversification at the genomic, epigenetic and functional levels.


Scientific Reports | 2018

Automated brightfield morphometry of 3D organoid populations by OrganoSeg

Michael A. Borten; Sameer S. Bajikar; Nobuo Sasaki; Hans Clevers; Kevin A. Janes

Spheroid and organoid cultures are powerful in vitro models for biology, but size and shape diversity within the culture is largely ignored. To streamline morphometric profiling, we developed OrganoSeg, an open-source software that integrates segmentation, filtering, and analysis for archived brightfield images of 3D culture. OrganoSeg is more accurate and flexible than existing platforms, and we illustrate its potential by stratifying 5167 breast-cancer spheroid and 5743 colon and colorectal-cancer organoid morphologies. Organoid transcripts grouped by morphometric signature heterogeneity were enriched for biological processes not prominent in the original RNA sequencing data. OrganoSeg enables complete, objective quantification of brightfield phenotypes, which may give insight into the molecular and multicellular mechanisms of organoid regulation.

Collaboration


Dive into the Nobuo Sasaki's collaboration.

Top Co-Authors

Avatar

Hans Clevers

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Lyubimova

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge