Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobutaka Funa is active.

Publication


Featured researches published by Nobutaka Funa.


Nature | 1999

A new pathway for polyketide synthesis in microorganisms

Nobutaka Funa; Yasuo Ohnishi; Isao Fujii; Masaaki Shibuya; Yutaka Ebizuka; Sueharu Horinouchi

Chalcone synthases, which biosynthesize chalcones (the starting materials for many flavonoids,), have been believed to be specific to plants. However, the rppA gene from the Gram-positive, soil-living filamentous bacterium Streptomyces griseus encodes a 372-amino-acid protein that shows significant similarity to chalcone synthases. Several rppA-like genes are known, but their functions and catalytic properties have not been described. Here we show that a homodimer of RppA catalyses polyketide synthesis: it selects malonyl-coenzyme-A as the starter, carries out four successive extensions and releases the resulting pentaketide to cyclize to 1,3,6,8-tetrahydroxynaphthalene (THN). Site-directed mutagenesis revealed that, as in other chalcone synthases,, a cysteine residue is essential for enzyme activity. Disruption of the chromosomal rppA gene in S. griseus abolished melanin production in hyphae, resulting in ‘albino’ mycelium. THN was readily oxidized to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin), which then randomly polymerized to form various coloured compounds. THN formed by RppA appears to be an intermediate in the biosynthetic pathways for not only melanins but also various secondary metabolites containing a naphthoquinone ring. Therefore, RppA is a chalcone-synthase-related synthase that synthesizes polyketides and is found in the Streptomyces and other bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces

Jun-ya Kato; Nobutaka Funa; Hidenori Watanabe; Yasuo Ohnishi; Sueharu Horinouchi

A factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is a representative of the γ-butyrolactone autoregulators that trigger secondary metabolism and morphogenesis in the Gram-positive, filamentous bacterial genus Streptomyces. Here, we report the A factor biosynthesis pathway in Streptomyces griseus. The monomeric AfsA, containing a tandem repeat domain of ≈80 aa, catalyzed β-ketoacyl transfer from 8-methyl-3-oxononanoyl-acyl carrier protein to the hydroxyl group of dihydroxyacetone phosphate (DHAP), thus producing an 8-methyl-3-oxononanoyl-DHAP ester. The fatty acid ester was nonenzymatically converted to a butenolide phosphate by intramolecular aldol condensation. The butenolide phosphate was then reduced by BprA that was encoded just downstream of afsA. The phosphate group on the resultant butanolide was finally removed by a phosphatase, resulting in formation of A factor. The 8-methyl-3-oxononanoyl-DHAP ester produced by the action of AfsA was also converted to A factor in an alternative way; the phosphate group on the ester was first removed by a phosphatase and the dephosphorylated ester was converted nonenzymatically to a butenolide, which was then reduced by a reductase different from BprA, resulting in A factor. Because introduction of afsA alone into Escherichia coli caused the host to produce a substance having A factor activity, the reductase(s) and phosphatase(s) were not specific to the A factor biosynthesis but commonly present in bacteria. AfsA is thus the key enzyme for the biosynthesis of γ-butyrolactones.


Journal of Biological Chemistry | 2007

Pentaketide Resorcylic Acid Synthesis by Type III Polyketide Synthase from Neurospora crassa

Nobutaka Funa; Takayoshi Awakawa; Sueharu Horinouchi

Type III polyketide synthases (PKSs) are responsible for aromatic polyketide synthesis in plants and bacteria. Genome analysis of filamentous fungi has predicted the presence of fungal type III PKSs, although none have thus far been functionally characterized. In the genome of Neurospora crassa, a single open reading frame, NCU04801.1, annotated as a type III PKS was found. In this report, we demonstrate that NCU04801.1 is a novel type III PKS catalyzing the synthesis of pentaketide alkylresorcylic acids. NCU04801.1, hence named 2′-oxoalkylresorcylic acid synthase (ORAS), preferred stearoyl-CoA as a starter substrate and condensed four molecules of malonyl-CoA to give a pentaketide intermediate. For ORAS to yield pentaketide alkylresorcylic acids, aldol condensation and aromatization of the intermediate, which is still attached to the enzyme, are presumably followed by hydrolysis for release of the product as a resorcylic acid. ORAS is the first type III PKS that synthesizes pentaketide resorcylic acids.


Journal of Biological Chemistry | 2009

Curcuminoid Biosynthesis by Two Type III Polyketide Synthases in the Herb Curcuma longa

Yohei Katsuyama; Tomoko Kita; Nobutaka Funa; Sueharu Horinouchi

Curcuminoids found in the rhizome of turmeric, Curcuma longa, possess various biological activities. Despite much attention regarding the biosynthesis of curcuminoids because of their pharmaceutically important properties and biosynthetically intriguing structures, no enzyme systems have been elucidated. Here we propose a pathway for curcuminoid biosynthesis in the herb C. longa, which includes two novel type III polyketide synthases. One of the type III polyketide synthases, named diketide-CoA synthase (DCS), catalyzed the formation of feruloyldiketide-CoA by condensing feruloyl-CoA and malonyl-CoA. The other, named curcumin synthase (CURS), catalyzed the in vitro formation of curcuminoids from cinnamoyldiketide-N-acetylcysteamine (a mimic of the CoA ester) and feruloyl-CoA. Co-incubation of DCS and CURS in the presence of feruloyl-CoA and malonyl-CoA yielded curcumin at high efficiency, although CURS itself possessed low activity for the synthesis of curcumin from feruloyl-CoA and malonyl-CoA. These findings thus revealed the curcumin biosynthetic route in turmeric, in which DCS synthesizes feruloyldiketide-CoA, and CURS then converts the diketide-CoA esters into a curcuminoid scaffold.


Journal of Biological Chemistry | 2002

Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus

Nobutaka Funa; Yasuo Ohnishi; Yutaka Ebizuka; Sueharu Horinouchi

RppA, a chalcone synthase-related polyketide synthase (type III polyketide synthase) in the bacteriumStreptomyces griseus, catalyzes the formation of 1,3,6,8-tetrahydroxynaphthalene (THN) from five molecules of malonyl-CoA. The K m value for malonyl-CoA and thek cat value for THN synthesis were determined to be 0.93 ± 0.1 μm and 0.77 ± 0.04 min−1, respectively. RppA accepted aliphatic acyl-CoAs with the carbon lengths from C4 to C8as starter substrates and catalyzed sequential condensation of malonyl-CoA to yield α-pyrones and phloroglucinols. In addition, RppA yielded a hexaketide, 4-hydroxy-6-(2′,4′,6′-trioxotridecyl)-2-pyrone, from octanoyl-CoA and five molecules of malonyl-CoA, suggesting that the size of the active site cavity of RppA is larger than any other chalcone synthase-related enzymes found so far in plants and bacteria. RppA was also found to synthesize a C-methylated pyrone, 3,6-dimethyl-4-hydroxy-2-pyrone, by using acetoacetyl-CoA as the starter and methylmalonyl-CoA as an extender. Thus, the broad substrate specificity of RppA yields a wide variety of products.


Chemistry & Biology | 2009

Physically Discrete β-Lactamase-Type Thioesterase Catalyzes Product Release in Atrochrysone Synthesis by Iterative Type I Polyketide Synthase

Takayoshi Awakawa; Kosuke Yokota; Nobutaka Funa; Fuminao Doi; Naoki Mori; Hidenori Watanabe; Sueharu Horinouchi

ATEG_08451 in Aspergillus terreus, here named atrochrysone carboxylic acid synthase (ACAS), is a nonreducing, iterative type I polyketide synthase that contains no thioesterase domain. In vitro, reactions of ACAS with malonyl-CoA yielded a polyketide intermediate, probably attached to its acyl carrier protein (ACP). The addition of ATEG_08450, here named atrochrysone carboxyl ACP thioesterase (ACTE), to the reaction resulted in the release of products derived from atrochrysone carboxylic acid, such as atrochrysone and endocrocin. ACTE, belonging to the beta-lactamase superfamily, thus appears to be a novel type of thioesterase responsible for product release in polyketide biosynthesis. These findings show that ACAS synthesizes the scaffold of atrochrysone carboxylic acid from malonyl-CoA, and that ACTE hydrolyzes the thioester bond between the ACP of ACAS and the intermediate to release atrochrysone carboxylic acid as the reaction product.


Journal of Biological Chemistry | 2008

Phenolic Lipids Synthesized by Type III Polyketide Synthase Confer Penicillin Resistance on Streptomyces griseus

Masanori Funabashi; Nobutaka Funa; Sueharu Horinouchi

Type III polyketide synthases (PKSs) found in plants, fungi, and bacteria synthesize a variety of aromatic polyketides. A Gram-positive, filamentous bacterium Streptomyces griseus contained an srs operon, in which srsA encoded a type III PKS, srsB encoded a methyltransferase, and srsC encoded a flavoprotein hydroxylase. Consistent with this annotation, overexpression of the srs genes in a heterologous host, Streptomyces lividans, showed that SrsA was a type III PKS responsible for synthesis of phenolic lipids, alkylresorcinols, and alkylpyrones, SrsB was a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC was a hydroxylase acting on the alkylresorcinol methyl ethers. In vitro SrsA reaction showed that SrsA synthesized alkylresorcinols from acyl-CoAs of various chain lengths as a starter substrate, one molecule of methylmalonyl-CoA, and two molecules of malonyl-CoA. SrsA was thus unique in that it incorporated the extender substrates in a strictly controlled order of malonyl-CoA, malonyl-CoA, and methylmalonyl-CoA to produce alkylresorcinols. An srsA mutant, which produced no phenolic lipids, was highly sensitive to β-lactam antibiotics, such as penicillin G and cephalexin. Together with the fact that the alkylresorcinols were fractionated mainly in the cell wall fraction, this observation suggests that the phenolic lipids, perhaps associated with the cytoplasmic membrane because of their amphiphilic property, affect the characteristic and rigidity of the cytoplasmic membrane/peptidoglycan of a variety of bacteria. An srs-like operon is found widely among Gram-positive and -negative bacteria, indicating wide distribution of the phenolic lipids.


Journal of Biological Chemistry | 2007

In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa.

Yohei Katsuyama; Miku Matsuzawa; Nobutaka Funa; Sueharu Horinouchi

Curcuminoids, major components of the spice turmeric, are used as a traditional Asian medicine and a food additive. Curcumin, a representative curcuminoid, has received a great deal of attention because of its anti-inflammatory, anticarcinogenic, and antitumor activities. Here we report a novel type III polyketide synthase named curcuminoid synthase from Oryza sativa, which synthesizes bisdemethoxycurcumin via a unique mechanism from two 4-coumaroyl-CoAs and one malonyl-CoA. The reaction begins with the thioesterification of the thiol moiety of Cys-174 by a starter molecule, 4-coumaroyl-CoA. Decarboxylative condensation of the first extender substrate, malonyl-CoA, onto the thioester of 4-coumarate results in the formation of a diketide-CoA intermediate. Subsequent hydrolysis of the intermediate yields a β-keto acid, which in turn acts as the second extender substrate. The β-keto acid is then joined to the Cys-174-bound 4-coumarate by decarboxylative condensation to form bisdemethoxycurcumin. This reaction violates the traditional head-to-tail model of polyketide assembly; the growing diketide intermediate is hydrolyzed to a β-keto acid that subsequently serves as the second extender to form curcuminoids. Curcuminoid synthase appears to be capable of the synthesis of not only diarylheptanoids but also gingerol analogues, because it synthesized cinnamoyl(hexanoyl)methane, a putative intermediate of gingerol, from cinnamoyl-CoA and 3-oxo-octanoic acid.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis

Akimasa Miyanaga; Nobutaka Funa; Takayoshi Awakawa; Sueharu Horinouchi

Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C22–C26 fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C22–C26 fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer.


Journal of Bacteriology | 2005

Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus.

Nobutaka Funa; Masanori Funabashi; Yasuo Ohnishi; Sueharu Horinouchi

Dihydroxyphenylalanine (DOPA) melanins formed from tyrosine by tyrosinases are found in microorganisms, plants, and animals. Most species in the soil-dwelling, gram-positive bacterial genus Streptomyces produce DOPA melanins and melanogenesis is one of the characteristics used for taxonomy. Here we report a novel melanin biosynthetic pathway involving a type III polyketide synthase (PKS), RppA, and a cytochrome P-450 enzyme, P-450mel, in Streptomyces griseus. In vitro reconstitution of the P-450mel catalyst with spinach ferredoxin-NADP(+) reductase/ferredoxin revealed that it catalyzed oxidative biaryl coupling of 1,3,6,8-tetrahydroxynaphthalene (THN), which was formed from five molecules of malonyl-coenzyme A by the action of RppA to yield 1,4,6,7,9,12-hexahydroxyperylene-3,10-quinone (HPQ). HPQ readily autopolymerized to generate HPQ melanin. Disruption of either the chromosomal rppA or P-450mel gene resulted in abolishment of the HPQ melanin synthesis in S. griseus and a decrease in the resistance of spores to UV-light irradiation. These findings show that THN-derived melanins are not exclusive in eukaryotic fungal genera but an analogous pathway is conserved in prokaryotic streptomycete species as well. A vivid contrast in THN melanin biosynthesis between streptomycetes and fungi is that the THN synthesized by the action of a type III PKS is used directly for condensation in the former, while the THN synthesized by the action of type I PKSs is first reduced and the resultant 1,8-dihydroxynaphthalene is then condensed in the latter.

Collaboration


Dive into the Nobutaka Funa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akimasa Miyanaga

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge