Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuyo Maeda is active.

Publication


Featured researches published by Nobuyo Maeda.


Journal of Clinical Investigation | 2002

Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice

Hong Xiao; Peter Heeringa; Peiqi Hu; Zhi Liu; Minglang Zhao; Yasuaki Aratani; Nobuyo Maeda; Ronald J. Falk; J. Charles Jennette

Antineutrophil cytoplasmic autoantibodies (ANCAs) are identified in the circulation of approximately 80% of patients with pauci-immune necrotizing and crescentic glomerulonephritis and systemic small vessel vasculitis, such as microscopic polyangiitis and Wegener granulomatosis. The most common antigen target for ANCAs is myeloperoxidase (MPO), which is found in neutrophils and monocytes. We report definitive experimental animal evidence that ANCAs are pathogenic. MPO knockout (Mpo(-/-)) mice were immunized with mouse MPO. Splenocytes from these mice or from control mice were injected intravenously into recombinase-activating gene-2-deficient (Rag2(-/-)) mice, which lack functioning B lymphocytes and T lymphocytes. All mice that received splenocytes developed mild to moderate glomerular immune deposits, but only mice that received 1 x 10(8) or 5 x 10(7) anti-MPO splenocytes developed severe necrotizing and crescentic glomerulonephritis, granulomatous inflammation, and systemic necrotizing vasculitis, including necrotizing arteritis and hemorrhagic pulmonary capillaritis. To test the pathogenic potential of antibodies alone, purified anti-MPO IgG or control IgG was injected intravenously into Rag2(-/-) mice and wild-type mice. Mice that received anti-MPO IgG but not mice that received control IgG developed focal necrotizing and crescentic glomerulonephritis with a paucity of glomerular Ig deposition. Thus, anti-MPO IgG alone was able to cause pauci-immune glomerular necrosis and crescent formation in the absence of functional T or B lymphocytes in Rag2(-/-) mice and in the presence of an intact immune system in wild-type C57BL/6J mice. This animal model offers strong support for a direct pathogenic role for ANCA IgG in human glomerulonephritis and vasculitis.


Journal of Clinical Investigation | 1998

Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.

Radu Daniel Rudic; Edward G. Shesely; Nobuyo Maeda; Oliver Smithies; Steven S. Segal; William C. Sessa

The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external carotid artery ligation, mice with targeted disruption of the endothelial nitric oxide synthase gene (eNOS) did not remodel their ipsilateral common carotid arteries whereas wild-type mice did. Rather, the eNOS mutant mice displayed a paradoxical increase in wall thickness accompanied by a hyperplastic response of the arterial wall. These findings demonstrate a critical role for endogenous NO as a negative regulator of vascular smooth muscle proliferation in response to a remodeling stimulus. Furthermore, our data suggests that a primary defect in the NOS/NO pathway can promote abnormal remodeling and may facilitate pathological changes in vessel wall morphology associated with complex diseases such as hypertension and atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1994

Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression.

Robert L. Reddick; Sunny H. Zhang; Nobuyo Maeda

Apolipoprotein E-deficient mice have spontaneous elevations of total plasma cholesterol and triglycerides and reduced high-density lipoprotein. The mice develop arterial lesions in a time-dependent manner. Lesional distribution was centered in the aortic sinus in young mice, and the lesions were widely distributed throughout the arterial tree in mice at 8 to 9 months of age. In young mice, subendothelial foam cell deposits were present in the aortic sinus adjacent to valve-attachment sites. By 5 months of age, foam cell deposits, free cholesterol, and admixed smooth muscle cells composed the developing atherosclerotic lesions. After 8 to 9 months of age, the arterial lesions showed increased complexity, and fibrous cap lesions were present. Transmission electron microscopy showed foam cells, smooth muscle cells (both contractile and synthetic varieties), cellular debris, and acicular cholesterol deposits within the plaques. By scanning electron microscopy, subendothelial collections of foam cells were present within the aortic sinus and ascending aorta. The results show that the complexity of the atherosclerotic lesions that develop in these apo E deficient-mice are similar to those described in other species and therefore represent an important model for studies of genetic and environmental influences on the atherosclerotic process.


Journal of Clinical Investigation | 2001

Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways

Geoff H. Werstuck; Steven R. Lentz; Sanjana Dayal; Gazi S. Hossain; Sudesh K. Sood; Yuan Y. Shi; Ji Zhou; Nobuyo Maeda; Skaidrite K. Krisans; M. Rene Malinow; Richard C. Austin

Hepatic steatosis is common in patients having severe hyperhomocysteinemia due to deficiency for cystathionine beta-synthase. However, the mechanism by which homocysteine promotes the development and progression of hepatic steatosis is unknown. We report here that homocysteine-induced endoplasmic reticulum (ER) stress activates both the unfolded protein response and the sterol regulatory element-binding proteins (SREBPs) in cultured human hepatocytes as well as vascular endothelial and aortic smooth muscle cells. Activation of the SREBPs is associated with increased expression of genes responsible for cholesterol/triglyceride biosynthesis and uptake and with intracellular accumulation of cholesterol. Homocysteine-induced gene expression was inhibited by overexpression of the ER chaperone, GRP78/BiP, thus demonstrating a direct role of ER stress in the activation of cholesterol/triglyceride biosynthesis. Consistent with these in vitro findings, cholesterol and triglycerides were significantly elevated in the livers, but not plasmas, of mice having diet-induced hyperhomocysteinemia. This effect was not due to impaired hepatic export of lipids because secretion of VLDL-triglyceride was increased in hyperhomocysteinemic mice. These findings suggest a mechanism by which homocysteine-induced ER stress causes dysregulation of the endogenous sterol response pathway, leading to increased hepatic biosynthesis and uptake of cholesterol and triglycerides. Furthermore, this mechanism likely explains the development and progression of hepatic steatosis and possibly atherosclerotic lesions observed in hyperhomocysteinemia.


Journal of Clinical Investigation | 2005

Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I

Jenelle M. Timmins; Ji Young Lee; Elena Boudyguina; Kimberly D. Kluckman; Liam R. Brunham; Anny Mulya; Abraham K. Gebre; Jonathan M. Coutinho; Perry L. Colvin; Thomas L. Smith; Michael R. Hayden; Nobuyo Maeda; John S. Parks

Patients with Tangier disease exhibit extremely low plasma HDL concentrations resulting from mutations in the ATP-binding cassette, sub-family A, member 1 (ABCA1) protein. ABCA1 controls the rate-limiting step in HDL particle assembly by mediating efflux of cholesterol and phospholipid from cells to lipid-free apoA-I, which forms nascent HDL particles. ABCA1 is widely expressed; however, the specific tissues involved in HDL biogenesis are unknown. To determine the role of the liver in HDL biogenesis, we generated mice with targeted deletion of the second nucleotide-binding domain of Abca1 in liver only (Abca1(-L/-L)). Abca1(-L/-L) mice had total plasma and HDL cholesterol concentrations that were 19% and 17% those of wild-type littermates, respectively. In vivo catabolism of HDL apoA-I from wild-type mice or human lipid-free apoA-I was 2-fold higher in Abca1(-L/-L) mice compared with controls due to a 2-fold increase in the catabolism of apoA-I by the kidney, with no change in liver catabolism. We conclude that in chow-fed mice, the liver is the single most important source of plasma HDL. Furthermore, hepatic, but not extrahepatic, Abca1 is critical in maintaining the circulation of mature HDL particles by direct lipidation of hepatic lipid-poor apoA-I, slowing its catabolism by the kidney and prolonging its plasma residence time.


Journal of Biological Chemistry | 1997

Targeted Replacement of the Mouse Apolipoprotein E Gene with the Common Human APOE3 Allele Enhances Diet-induced Hypercholesterolemia and Atherosclerosis

Patrick M. Sullivan; Hafid Mezdour; Yasuaki Aratani; Chris Knouff; Jamila Najib; Robert L. Reddick; Steven H. Quarfordt; Nobuyo Maeda

Apolipoprotein (apo) E, a constituent of several lipoproteins, is a ligand for the low density lipoprotein receptor, and this interaction is important for maintaining cholesterol and triglyceride homeostasis. We have used a gene replacement strategy to generate mice that express the human apoE3 isoform in place of the mouse protein. The levels of apoE mRNA in various tissues are virtually the same in the human apoE3 homozygous (3/3) mice and their littermates having the wild type mouse allele (+/+). Total cholesterol and triglyceride levels in fasted plasma from the 3/3 mice were not different from those in the +/+ mice, when maintained on a normal (low fat) chow diet. We found, however, notable differences in the distribution of plasma lipoproteins and apolipoprotein E between the two groups: β-migrating lipoproteins and plasma apoB100 levels are decreased in the 3/3 mice, and the apoE distribution is shifted from high density lipoproteins to larger lipoprotein particles. In addition, the fractional catabolic rate of exogenously administered remnant particles without apoE was 6-fold slower in the 3/3 mice compared with the +/+ mice. When the 3/3 and +/+ animals were fed a high fat/high cholesterol diet, the 3/3 animals responded with a dramatic increase (5-fold) in total cholesterol compared with the +/+ mice (1.5-fold), and after 12 weeks on this same diet the 3/3 animals developed significantly (at least 13-fold) larger atherosclerotic plaques in the aortic sinus area than the +/+ animals. Thus the structural differences between human APOE3 and mouse ApoE proteins are sufficient to cause an increased susceptibility to dietary-induced hypercholesterolemia and atherosclerosis in the 3/3 mice.


Journal of Clinical Investigation | 1994

Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice.

Chris Paszty; Nobuyo Maeda; Judy Verstuyft; Edward M. Rubin

Apolipoprotein E (apo E)-deficient mice are severely hypercholesterolemic and develop advanced atheromas independent of diet. The C57BL/6 strain differs from most inbred strains by having lower HDL concentrations and a high risk of developing early atherosclerotic lesions when fed an atherogenic diet. The relative HDL deficiency and atherosclerosis susceptibility of the C57BL/6 strain are corrected with the expression of a human apolipoprotein AI (apo AI) transgene in this genetic background. To examine if increases in apo AI and HDL are also effective in minimizing apo E deficiency--induced atherosclerosis, we introduced the human apo AI transgene into the hypercholesterolemic apo E knockout background. Similar elevations of total plasma cholesterol occurred in both the apo E knockout and apo E knockout mice also expressing the human apo AI transgene. The latter animals, however, also showed a two- to threefold increase in HDL and a sixfold decrease in susceptibility to atherosclerosis. This study demonstrates that elevating the concentration of apo AI reduces atherosclerosis in apo E deficient-mice and suggests that elevation of apo AI and HDL may prove to be a useful approach for treating unrelated causes of heightened atherosclerosis susceptibility.


Hepatology | 2008

Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis

Kristiaan Wouters; Patrick J. van Gorp; Veerle Bieghs; Marion J. J. Gijbels; Hans Duimel; Dieter Lütjohann; Anja Kerksiek; Roger van Kruchten; Nobuyo Maeda; Bart Staels; Marc van Bilsen; Ronit Shiri-Sverdlov; Marten H. Hofker

Nonalcoholic steatohepatitis (NASH) involves liver lipid accumulation (steatosis) combined with hepatic inflammation. The transition towards hepatic inflammation represents a key step in pathogenesis, because it will set the stage for further liver damage, culminating in hepatic fibrosis, cirrhosis, and liver cancer. The actual risk factors that drive hepatic inflammation during the progression to NASH remain largely unknown. The role of steatosis and dietary cholesterol in the etiology of diet‐induced NASH was investigated using hyperlipidemic mouse models fed a Western diet. Livers of male and female hyperlipidemic (low‐density lipoprotein receptor–deficient [ldlr−/−] and apolipoprotein E2 knock‐in [APOE2ki]) mouse models were compared with livers of normolipidemic wild‐type (WT) C57BL/6J mice after short‐term feeding with a high‐fat diet with cholesterol (HFC) and without cholesterol. Whereas WT mice displayed only steatosis after a short‐term HFC diet, female ldlr−/− and APOE2ki mice showed steatosis with severe inflammation characterized by infiltration of macrophages and increased nuclear factor κB (NF‐κB) signaling. Remarkably, male ldlr−/− and APOE2ki mice developed severe hepatic inflammation in the absence of steatosis after 7 days on an HFC diet compared with WT animals. An HFC diet induced bloated, “foamy” Kupffer cells in male and female ldlr−/− and APOE2ki mice. Hepatic inflammation was found to be linked to increased plasma very low‐density lipoprotein (VLDL) cholesterol levels. Omitting cholesterol from the HFC diet lowered plasma VLDL cholesterol and prevented the development of inflammation and hepatic foam cells. Conclusion: These findings indicate that dietary cholesterol, possibly in the form of modified plasma lipoproteins, is an important risk factor for the progression to hepatic inflammation in diet‐induced NASH. (HEPATOLOGY 2008;48:474–486.)


Atherosclerosis | 1999

Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice

Tracey C. Dawson; William A. Kuziel; Tene A. Osahar; Nobuyo Maeda

The accumulation of circulating monocytes in the arterial wall is an early event in atherosclerotic plaque formation. Monocyte chemoattractant protein-1 (MCP-1) has been implicated as the primary source of monocyte chemoattractant functioning in these early stages of atherogenesis. To determine whether the receptor for MCP-1, CC chemokine receptor CCR2, plays a role in atherogenesis, CCR2-deficient animals were crossed with mice lacking apo E, a well characterized model of atherosclerosis. While lipid levels were unchanged, the double knockout mice exhibited a 3-fold reduction in mean aortic lesion area compared to apo E-deficient control mice. Furthermore, the lesions in the double mutants were less advanced, consisting primarily of foam cell deposits and fatty streaks located on or directly adjacent to the aortic valve attachment sites. These studies directly demonstrate that the MCP-1 receptor, CCR2, plays an important role in atherogenesis.


American Journal of Pathology | 2000

Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus.

Tracey C. Dawson; Melinda A. Beck; William A. Kuziel; Fred Henderson; Nobuyo Maeda

The immune response to influenza A virus is characterized by an influx of both macrophages and T lymphocytes into the lungs of the infected host, accompanied by induced expression of a number of CC chemokines. CC chemokine receptors CCR5 and CCR2 are both expressed on activated macrophages and T cells. We examined how the absence of these chemokine receptors would affect pulmonary chemokine expression and induced leukocyte recruitment by infecting CCR5-deficient mice and CCR2-deficient mice with a mouse-adapted strain of influenza A virus. CCR5(-/-) mice displayed increased mortality rates associated with acute, severe pneumonitis, whereas CCR2(-/-) mice were protected from the early pathological manifestations of influenza because of defective macrophage recruitment. This delay in macrophage accumulation in CCR2(-/-) mice caused a subsequent delay in T cell migration, which correlated with high pulmonary viral titers at early time points. Infected CCR5(-/-) mice and CCR2(-/-) mice both exhibited increased expression of the gene for MCP-1, the major ligand for CCR2(-/-) and a key regulator of induced macrophage migration. These studies illustrate the very different roles that CCR5 and CCR2 play in the macrophage response to influenza infection and demonstrate how defects in macrophage recruitment affect the normal development of the cell-mediated immune response.

Collaboration


Dive into the Nobuyo Maeda's collaboration.

Top Co-Authors

Avatar

Oliver Smithies

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hyung Suk Kim

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert L. Reddick

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

John R. Hagaman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael K. Altenburg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Kuziel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Yau Sheng Tsai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Sunny H. Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sylvia Hiller

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge