Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuyuki Fujita is active.

Publication


Featured researches published by Nobuyuki Fujita.


PLOS ONE | 2011

Novel Roles of cAMP Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources

Tomohiro Shimada; Nobuyuki Fujita; Kaneyoshi Yamamoto; Akira Ishihama

CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons.


Genes to Cells | 2005

Systematic search for the Cra-binding promoters using genomic SELEX system

Tomohiro Shimada; Nobuyuki Fujita; Michihisa Maeda; Akira Ishihama

Cra (or FruR), a global transcription factor with both repression and activation activities, controls a large number of the genes for glycolysis and gluconeogenesis. To get insights into the entire network of transcription regulation of the E. coli genome by Cra, we isolated a set of Cra‐binding sequences using an improved method of genomic SELEX. From the DNA sequences of 97 independently isolated DNA fragments by SELEX, the Cra‐binding sequences were identified in a total of ten regions on the E. coli genome, including promoters of six known genes and four hitherto‐unidentified genes. All six known promoters are repressed by Cra, but none of the activation‐type promoters were cloned after two cyles of SELEX, because the Cra‐binding affinity to the repression‐type promoters is higher than the activation‐type promoters, as determined by the quantitative gel shift assay. Of a total of four newly identified Cra‐binding sequences, two are associated with promoter regions of the gapA (glyceraldehyde 3‐phosphate dehydrogenase) and eno (enolase) genes, both involved in sugar metabolism. The regulation of newly identified genes by Cra was confirmed by the in vivo promoter strength assay using a newly developed TFP (two‐fluorescent protein) vector for promoter assay or by in vitro transcription assay in the presence of Cra protein.


Nucleic Acids Research | 2009

Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus

Yoshinao Azuma; Akira Hosoyama; Minenosuke Matsutani; Naoko Furuya; Hiroshi Horikawa; Takeshi Harada; Hideki Hirakawa; Satoru Kuhara; Kazunobu Matsushita; Nobuyuki Fujita

Acetobacter species have been used for brewing traditional vinegar and are known to have genetic instability. To clarify the mutability, Acetobacter pasteurianus NBRC 3283, which forms a multi-phenotype cell complex, was subjected to genome DNA sequencing. The genome analysis revealed that there are more than 280 transposons and five genes with hyper-mutable tandem repeats as common features in the genome consisting of a 2.9-Mb chromosome and six plasmids. There were three single nucleotide mutations and five transposon insertions in 32 isolates from the cell complex. The A. pasteurianus hyper-mutability was applied for breeding a temperature-resistant strain grown at an unviable high-temperature (42°C). The genomic DNA sequence of a heritable mutant showing temperature resistance was analyzed by mutation mapping, illustrating that a 92-kb deletion and three single nucleotide mutations occurred in the genome during the adaptation. Alpha-proteobacteria including A. pasteurianus consists of many intracellular symbionts and parasites, and their genomes show increased evolution rates and intensive genome reduction. However, A. pasteurianus is assumed to be a free-living bacterium, it may have the potentiality to evolve to fit in natural niches of seasonal fruits and flowers with other organisms, such as yeasts and lactic acid bacteria.


DNA Research | 2011

Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

Takeshi Akao; Isao Yashiro; Akira Hosoyama; Hiroshi Kitagaki; Hiroshi Horikawa; Daisuke Watanabe; Rinji Akada; Yoshinori Ando; Satoshi Harashima; Toyohisa Inoue; Yoshiharu Inoue; Susumu Kajiwara; Katsuhiko Kitamoto; Noriyuki Kitamoto; Osamu Kobayashi; Takashi Masubuchi; Haruhiko Mizoguchi; Yoshihiro Nakao; Atsumi Nakazato; Masahiro Namise; Takahiro Oba; Tomoo Ogata; Akinori Ohta; Masahide Sato; Seiji Shibasaki; Yoshifumi Takatsume; Shota Tanimoto; Hirokazu Tsuboi; Akira Nishimura; Koji Yoda

The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


The EMBO Journal | 1995

Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase.

Hyon E. Choy; Seong Weon Park; Tsunehiro Aki; Pradip Parrack; Nobuyuki Fujita; Akira Ishihama; Sankar Adhya

Gal or Lac repressor binding to an upstream DNA segment, in the absence of DNA looping, represses the P1 promoter located on the same face and activates the P2 promoter situated on the opposite face of the DNA helix in the gal operon. Both inhibition and stimulation of transcription requires the physical presence of the C‐terminal domain of the alpha subunit of RNA polymerase although the latter is not required for transcription itself. We propose that Gal and Lac repressors inhibit or stimulate transcription initiation by disabling or stimulating RNA polymerase activity at a post‐binding step by directly or indirectly altering the C‐terminal alpha domain to an unfavorable state at P1 or a more favorable state at P2, respectively.


DNA Research | 2010

Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39.

Takatomo Fujisawa; Rei Narikawa; Shinobu Okamoto; Shigeki Ehira; Hidehisa Yoshimura; Iwane Suzuki; Tatsuru Masuda; Mari Mochimaru; Shinichi Takaichi; Koichiro Awai; Mitsuo Sekine; Hiroshi Horikawa; Isao Yashiro; Seiha Omata; Hiromi Takarada; Yoko Katano; Hiroki Kosugi; Satoshi Tanikawa; Kazuko Ohmori; Naoki Sato; Masahiko Ikeuchi; Nobuyuki Fujita; Masayuki Ohmori

A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis.


Nucleic Acids Research | 2012

DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters

Natsuko Ichikawa; Machi Sasagawa; Mika Yamamoto; Hisayuki Komaki; Yumi Yoshida; Shuji Yamazaki; Nobuyuki Fujita

This article introduces DoBISCUIT (Database of BIoSynthesis clusters CUrated and InTegrated, http://www.bio.nite.go.jp/pks/), a literature-based, manually curated database of gene clusters for secondary metabolite biosynthesis. Bacterial secondary metabolites often show pharmacologically important activities and can serve as lead compounds and/or candidates for drug development. Biosynthesis of each secondary metabolite is catalyzed by a number of enzymes, usually encoded by a gene cluster. Although many scientific papers describe such gene clusters, the gene information is not always described in a comprehensive manner and the related information is rarely integrated. DoBISCUIT integrates the latest literature information and provides standardized gene/module/domain descriptions related to the gene clusters.


DNA Research | 2010

Genome Sequence of Kitasatospora setae NBRC 14216T: An Evolutionary Snapshot of the Family Streptomycetaceae

Natsuko Ichikawa; Akio Oguchi; Haruo Ikeda; Jun Ishikawa; Shigeru Kitani; Yumi Watanabe; Sanae Nakamura; Yoko Katano; Emi Kishi; Machi Sasagawa; Akiho Ankai; Shigehiro Fukui; Yoshimi Hashimoto; Sachi Kamata; Misa Otoguro; Satoshi Tanikawa; Takuya Nihira; Sueharu Horinouchi; Yasuo Ohnishi; Masayuki Hayakawa; Tomohisa Kuzuyama; Akira Arisawa; Fumiki Nomoto; Yoko Takahashi; Nobuyuki Fujita

Kitasatospora setae NBRC 14216T (=KM-6054T) is known to produce setamycin (bafilomycin B1) possessing antitrichomonal activity. The genus Kitasatospora is morphologically similar to the genus Streptomyces, although they are distinguishable from each other on the basis of cell wall composition and the 16S rDNA sequence. We have determined the complete genome sequence of K. setae NBRC 14216T as the first Streptomycetaceae genome other than Streptomyces. The genome is a single linear chromosome of 8 783 278 bp with terminal inverted repeats of 127 148 bp, predicted to encode 7569 protein-coding genes, 9 rRNA operons, 1 tmRNA and 74 tRNA genes. Although these features resemble those of Streptomyces, genome-wide comparison of orthologous genes between K. setae and Streptomyces revealed smaller extent of synteny. Multilocus phylogenetic analysis based on amino acid sequences unequivocally placed K. setae outside the Streptomyces genus. Although many of the genes related to morphological differentiation identified in Streptomyces were highly conserved in K. setae, there were some differences such as the apparent absence of the AmfS (SapB) class of surfactant protein and differences in the copy number and variation of paralogous components involved in cell wall synthesis.


Biotechnology for Biofuels | 2015

Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses.

Noppon Lertwattanasakul; Tomoyuki Kosaka; Akira Hosoyama; Yutaka Suzuki; Nadchanok Rodrussamee; Minenosuke Matsutani; Masayuki Murata; Naoko Fujimoto; Suprayogi; Keiko Tsuchikane; Savitree Limtong; Nobuyuki Fujita; Mamoru Yamada

BackgroundHigh-temperature fermentation technology with thermotolerant microbes has been expected to reduce the cost of bioconversion of cellulosic biomass to fuels or chemicals. Thermotolerant Kluyveromyces marxianus possesses intrinsic abilities to ferment and assimilate a wide variety of substrates including xylose and to efficiently produce proteins. These capabilities have been found to exceed those of the traditional ethanol producer Saccharomyces cerevisiae or lignocellulose-bioconvertible ethanologenic Scheffersomyces stipitis.ResultsThe complete genome sequence of K. marxianus DMKU 3-1042 as one of the most thermotolerant strains in the same species has been determined. A comparison of its genomic information with those of other yeasts and transcriptome analysis revealed that the yeast bears beneficial properties of temperature resistance, wide-range bioconversion ability, and production of recombinant proteins. The transcriptome analysis clarified distinctive metabolic pathways under three different growth conditions, static culture, high temperature, and xylose medium, in comparison to the control condition of glucose medium under a shaking condition at 30°C. Interestingly, the yeast appears to overcome the issue of reactive oxygen species, which tend to accumulate under all three conditions.ConclusionsThis study reveals many gene resources for the ability to assimilate various sugars in addition to species-specific genes in K. marxianus, and the molecular basis of its attractive traits for industrial applications including high-temperature fermentation. Especially, the thermotolerance trait may be achieved by an integrated mechanism consisting of various strategies. Gene resources and transcriptome data of the yeast are particularly useful for fundamental and applied researches for innovative applications.


Journal of Bacteriology | 2011

Complete Genome Sequence of NBRC 3288, a Unique Cellulose-Nonproducing Strain of Gluconacetobacter xylinus Isolated from Vinegar

Hidetaka Ogino; Yoshinao Azuma; Akira Hosoyama; Hidekazu Nakazawa; Minenosuke Matsutani; Akihiro Hasegawa; Ken-ichiro Otsuyama; Kazunobu Matsushita; Nobuyuki Fujita

Gluconacetobacter xylinus is involved in the industrial production of cellulose. We have determined the genome sequence of G. xylinus NBRC 3288, a cellulose-nonproducing strain. Comparative analysis of genomes of G. xylinus NBRC 3288 with those of the cellulose-producing strains clarified the genes important for cellulose production in Gluconacetobacter.

Collaboration


Dive into the Nobuyuki Fujita's collaboration.

Top Co-Authors

Avatar

Akira Hosoyama

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar

Atsushi Yamazoe

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar

Natsuko Ichikawa

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar

Shoko Ohji

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Tsuchikane

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Oguchi

National Institute of Technology and Evaluation

View shared research outputs
Researchain Logo
Decentralizing Knowledge