Nobuyuki Udagawa
Showa University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobuyuki Udagawa.
Journal of Clinical Investigation | 1999
Shigeru Kotake; Nobuyuki Udagawa; Naoyuki Takahashi; Kenichiro Matsuzaki; Kanami Itoh; Shigeru Ishiyama; Seiji Saito; Kazuhiko Inoue; Naoyuki Kamatani; Matthew T. Gillespie; T. John Martin; Tatsuo Suda
IL-17 is a newly discovered T cell-derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17-induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 increased prostaglandin E2 (PGE2) synthesis in cocultures of bone marrow cells and osteoblasts and in single cultures of osteoblasts, but not in single cultures of bone marrow cells. In addition, IL-17 dose-dependently induced expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts. ODF is a membrane-associated protein that transduces an essential signal(s) to osteoclast progenitors for differentiation into osteoclasts. Osteoclastogenesis inhibitory factor (OCIF), a decoy receptor of ODF, completely inhibited IL-17-induced osteoclast differentiation in the cocultures. Levels of IL-17 in synovial fluids were significantly higher in rheumatoid arthritis (RA) patients than osteoarthritis (OA) patients. Anti-IL-17 antibody significantly inhibited osteoclast formation induced by culture media of RA synovial tissues. These findings suggest that IL-17 first acts on osteoblasts, which stimulates both COX-2-dependent PGE2 synthesis and ODF gene expression, which in turn induce differentiation of osteoclast progenitors into mature osteoclasts, and that IL-17 is a crucial cytokine for osteoclastic bone resorption in RA patients.
Bone | 1999
Nobuyuki Udagawa; Naoyuki Takahashi; Eijiro Jimi; Kenichiro Matsuzaki; T Tsurukai; Kanami Itoh; Nobuaki Nakagawa; Hisataka Yasuda; M Goto; Eisuke Tsuda; Kanji Higashio; Matthew T. Gillespie; T. J. Martin; Tatsuo Suda
We previously reported that osteoblasts/stromal cells are essentially involved in the activation as well as differentiation of osteoclasts through a mechanism involving cell-to-cell contact between osteoblasts/stromal cells and osteoclast precursors/osteoclasts. Osteoclast differentiation factor (ODF, also called RANKL/OPGL/TRANCE) and macrophage colony-stimulating factor (M-CSF, also called CSF-1) are two essential factors produced by osteoblasts/stromal cells for osteoclastogenesis. In other words, osteoblasts/stromal cells were not necessary to generate osteoclasts from spleen cells in the presence of both ODF/RANKL and M-CSF. In the present study, we examined the precise roles of ODF/RANKL and M-CSF in the activation of osteoclasts induced by calvarial osteoblasts. Osteoclasts were formed in mouse bone marrow cultures on collagen gel-coated dishes in response to a soluble form of ODF/RANKL (sODF/sRANKL) and M-CSF, and recovered by collagenase digestion. When recovered osteoclasts were further cultured on plastic dishes, most of the osteoclasts spontaneously died within 24 h. Osteoclasts cultured for 24 h on dentine slices could not form resorption pits. Addition of sODF/sRANKL to the recovered osteoclasts markedly enhanced their survival and pit-forming activity. M-CSF similarly stimulated the survival of osteoclasts, but did not induce their pit-forming activity. When primary mouse osteoblasts were added to the recovered osteoclasts, resorption pits were formed on dentine slices. Bone-resorbing factors such as 1alpha,25-dihydroxyvitamin D3, parathyroid hormone, or prostaglandin E2 enhanced pit-forming activity of osteoclasts only in the presence of osteoblasts. M-CSF-deficient osteoblasts prepared from op/op mice similarly enhanced pit-forming activity of osteoclasts. The pit-forming activity of osteoclasts induced by sODF/sRANKL or osteoblasts was completely inhibited by simultaneous addition of osteoprotegerin/osteoclastogenesis inhibitory factor, a decoy receptor of ODF/RANKL. Primary osteoblasts constitutively expressed ODF/RANKL mRNA, and its level was upregulated by treatment with 1alpha,25-dihydroxyvitamin D3, parathyroid hormone, and prostaglandin E2. These results, obtained by using an assay system that unequivocally assesses osteoclast activation, suggest that ODF/RANKL but not M-CSF mediates osteoblast-induced pit-forming activity of osteoclasts, and that bone-resorbing factors stimulate osteoclast activation through upregulation of ODF/RANKL by osteoblasts/stromal cells.
Bone | 1995
Tatsuo Suda; Nobuyuki Udagawa; Ichiro Nakamura; Chisato Miyaura; Naoyuki Takahashi
Bone-resorbing osteoclasts are of hemopoietic cell origin, probably of the CFU-M-derived monocyte-macrophage family. Bone marrow-derived osteoblastic stromal cells play an important role in modulating the differentiation of osteoclast progenitors in two different ways: one is the production of soluble factors, and the other is cell-to-cell recognition between osteoclast progenitors and osteoblastic stromal cells. M-CSF is probably the most important soluble factor, which appears to be necessary for not only proliferation of osteoclast progenitors, but also differentiation into mature osteoclasts and their survival. A number of local factors as well as systemic hormones induce osteoclast differentiation. They are classified into three categories in terms of the signal transduction: vitamin D receptor-mediated signals [1 alpha,25(OH)2D3]; protein kinase A-mediated signals (PTH, PTHrP, PGE2, and IL-1); and gp130-mediated signals (IL-6, IL-11, oncostatin M, and leukemia inhibitory factor). All of these osteoclast-inducing factors appear to act on osteoblastic cells to commonly induce osteoclast differentiation factor (ODF), which recognizes osteoclast progenitors and prepares them to differentiate into mature osteoclasts. This line of approach will undoubtedly produce new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment such as osteoporosis, osteopetrosis, Pagets disease, rheumatoid arthritis, and periodontal disease.
Bone | 1999
Hisataka Yasuda; Nobuyuki Shima; Nobuaki Nakagawa; Kyoji Yamaguchi; Masahiko Kinosaki; M Goto; S.-I Mochizuki; Eisuke Tsuda; Tomonori Morinaga; Nobuyuki Udagawa; Naoyuki Takahashi; Tatsuo Suda; Kanji Higashio
Osteoclasts, the multinucleated giant cells that resorb bone, develop from hematopoietic cells of the monocyte/ macrophage lineage. Osteoblasts, as well as bone marrow stromal cells, support osteoclast development through a mechanism of cell-to-cell interaction with osteoclast progenitors. We recently purified and molecularly cloned osteoclastogenesis inhibitory factor (OCIF), which was identical to osteoprotegerin (OPG). OPG/OCIF, a secreted member of the tumor necrosis factor (TNF) receptor family, inhibited differentiation and activation of osteoclasts. A single class of high-affinity binding sites for OPG/OCIF appeared on a mouse bone marrow stromal cell line, ST2, in response to 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] and dexamethasone (Dex). When the binding sites were occupied by OPG/OCIF, ST2 cells failed to support the osteoclast formation from spleen cells. To identify an OPG/OCIF ligand, we screened a cDNA expression library of ST2 cells treated with 1,25(OH)2D3 and Dex using OPG/OCIF as a probe. The cloned molecule was found to be a member of the membrane-associated TNF ligand family, and it induced osteoclast formation from mouse and human osteoclast progenitors in the presence of macrophage colony-stimulating factor (M-CSF) in vitro. Expression of its gene in osteoblasts/stromal cells was up-regulated by osteotropic factors, such as 1,25(OH)2D3, prostaglandin E2 (P(GE2), parathyroid hormone (PTH), and interleukin (IL)-11. A polyclonal antibody against this protein, as well as OPG/OCIF, negated not only the osteoclastogenesis induced by the protein, but also bone resorption elicited by various osteotropic factors in a fetal mouse long bone culture system. These findings led us to conclude that the protein is osteoclast differentiation factor (ODF), a long sought-after ligand that mediates an essential signal to osteoclast progenitors for their differentiation into active osteoclasts. Recent analyses of ODF receptor demonstrated that RANK, a member of the TNF receptor family, is the signaling receptor for ODF in osteoclastogenesis, and that OPG/OCIF acts as a decoy receptor for ODF to compete against RANK. The discovery of ODF, OPG/OCIF, and RANK opens a new era in the investigation of the regulation of osteoclast differentiation and function.
Journal of Bone and Mineral Research | 2001
Julian M. W. Quinn; Kanami Itoh; Nobuyuki Udagawa; K D Hausler; Hisataka Yasuda; Nobuyuki Shima; Atsuko Mizuno; Kanji Higashio; Naoyuki Takahashi; Tatsuo Suda; T. John Martin; Matthew T. Gillespie
Transforming growth factor β (TGF‐β) is abundant in bone and has complex effects on osteolysis, with both positive and negative effects on osteoclast differentiation, suggesting that it acts via more than one mechanism. Osteoclastogenesis is determined primarily by osteoblast (OB) expression of the tumor necrosis factor (TNF)‐related molecule receptor activator of NF‐κB ligand (RANKL) and its decoy receptor osteoprotegerin (OPG), which are increased and decreased, respectively, by osteolytic factors. A RANKL‐independent osteoclastogenic mechanism mediated by TNF‐α has also been shown. Therefore, we investigated TGF‐β effects on osteoclast formation in culture systems in which osteoclastogenic stimulus is dependent on OBs and culture systems where it was provided by exogenously added RANKL or TNF‐α. Both OPG and TGF‐β inhibited osteoclast formation in hemopoietic cell/OB cocultures, but the kinetics of their action differed. TGF‐β also inhibited osteoclastogenesis in cocultures of cells derived from OPG null (opg−/−) mice. TGF‐β strongly decreased RANKL messenger RNA (mRNA) expression in cultured osteoblasts, and addition of exogenous RANKL to TGFβ‐inhibited cocultures of opg−/− cells partially restored osteoclastogenesis. Combined, these data indicate that the inhibitory actions of TGF‐β were mediated mainly by decreased OB production of RANKL. In contrast, in the absence of OBs, TGF‐β greatly increased osteoclast formation in recombinant RANKL‐ or TNF‐α‐stimulated cultures of hemopoietic cells or RAW 264.7 macrophage‐like cells to levels several‐fold greater than attainable by maximal stimulation by RANKL or TNF‐α. These data suggest that TGF‐β may increase osteoclast formation via action on osteoclast precursors. Therefore, although RANKL (or TNF‐α) is essential for osteoclast formation, factors such as TGF‐β may powerfully modify these osteoclastogenic stimuli. Such actions may be critical to the control of physiological and pathophysiological osteolysis.
Bone | 1995
Hiroshi Murakami; Naoyuki Takahashi; Takahisa Sasaki; Nobuyuki Udagawa; Ichiro Nakamura; D. Zhang; A. Barbier; Tatsuo Suda
The mechanism of action of tiludronate [(4-chlorophenyl)-thiomethylene bisphosphonate] on osteoclastic bone resorption was examined in mouse culture systems. Tiludronate did not inhibit the formation of osteoclast-like multinucleated cells (OCLs) induced by 1 alpha,25-dihydroxyvitamin D3 in cocultures of mouse osteoblastic cells and bone marrow cells. OCLs obtained from cocultures on collagen gel-coated dishes, treated with tiludronate, formed as many resorption pits on dentine slices as those obtained from the control cocultures. However, pit formation by OCLs was dose-dependently inhibited when tiludronate was added directly to the pit formation assay. Other bisphosphonates such as alendronate and etidronate dose-dependently inhibited pit formation according to the in vivo potencies of the respective bisphosphonates to inhibit bone resorption. However, they had no inhibitory effect on the recruitment of OCLs induced by 1 alpha,25-dihydroxyvitamin D3 in the cocultures. When OCLs were placed on dentine slices, they formed the ringed structure of F-actin-containing podosomes and ruffled borders (polarized OCLs) even in the presence of tiludronate. However, the actin rings in OCLs were disrupted by the addition of tiludronate soon after they began to resorb dentine. In contrast, OCLs placed on collagen gel formed neither actin rings nor ruffled borders (nonpolarized OCLs), and showed no response to tiludronate. OCLs formed from the spleen cells of osteosclerotic (oc/oc) mice developed the ringed structure of podosomes, but not ruffled borders, on dentine slices. The actin ring in the oc/oc spleen cell-derived OCLs placed on dentine slices was not disrupted by the addition of tiludronate.(ABSTRACT TRUNCATED AT 250 WORDS)
Endocrinology | 2001
Kanami Itoh; Nobuyuki Udagawa; Takenobu Katagiri; Shun-ichiro Iemura; Naoto Ueno; Hisataka Yasuda; Kanji Higashio; Julian M. W. Quinn; Matthew T. Gillespie; T. John Martin; Tatsuo Suda; Naoyuki Takahashi
Bone is a major storage site for TGFbeta superfamily members, including TGFbeta and bone morphogenetic proteins. It is believed that these cytokines are released from bone during bone resorption. Recent studies have shown that both RANKL and macrophage colony-stimulating factor are two essential factors produced by osteoblasts for inducing osteoclast differentiation. In the present study we examined the effects of bone morphogenetic protein-2 on osteoclast differentiation and survival supported by RANKL and/or macrophage colony-stimulating factor. Mouse bone marrow-derived macrophages differentiated into osteoclasts in the presence of RANKL and macrophage colony-stimulating factor. TGFbeta superfamily members such as bone morphogenetic protein-2, TGFbeta, and activin A markedly enhanced osteoclast differentiation induced by RANKL and macrophage colony-stimulating factor, although each cytokine alone failed to induce osteoclast differentiation in the absence of RANKL. Addition of a soluble form of bone morphogenetic protein receptor type IA to the culture markedly inhibited not only osteoclast formation induced by RANKL and bone morphogenetic protein-2, but also the basal osteoclast formation supported by RANKL alone. Either RANKL or macrophage colony-stimulating factor stimulated the survival of purified osteoclasts. Bone morphogenetic protein-2 enhanced the survival of purified osteoclasts supported by RANKL, but not by macrophage colony-stimulating factor. Both bone marrow macrophages and mature osteoclasts expressed bone morphogenetic protein-2 and bone morphogenetic protein receptor type IA mRNAs. An EMSA revealed that RANKL activated nuclear factor-kappaB in purified osteoclasts. Bone morphogenetic protein-2 alone did not activate nuclear factor-kappaB, but rather inhibited the activation of nuclear factor-kappaB induced by RANKL in purified osteoclasts. These findings suggest that bone morphogenetic protein-mediated signals cross-communicate with RANKL-mediated ones in inducing osteoclast differentiation and survival. The enhancement of RANKL-induced survival of osteoclasts by bone morphogenetic protein-2 appears unrelated to nuclear factor-kappaB activation.
The FASEB Journal | 1998
Byoung S. Kwon; Sa Wang; Nobuyuki Udagawa; Valsala Haridas; Zang H. Lee; Kack Kyun Kim; Kwi Ok Oh; John Greene; Yuling Li; Jeffrey Su; Reiner Gentz; Bharat B. Aggarwal; Jian Ni
A newly identified member of the tumor necrosis factor receptor (TNFR) superfamily shows activities associated with osteoclastogenesis inhibition and fibroblast proliferation. This new member, called TR1, was identified from a search of an expressed sequence tag database, and encodes 401 amino acids with a 21‐residue signal sequence. Unlike other members of TNFR, TR1 does not contain a transmembrane domain and is secreted as a 62 kDa glycoprotein. TR1 gene maps to chromosome 8q23–24.1 and its mRNA is abundantly expressed on primary osteoblasts, osteogenic sarcoma cell lines, and primary fibroblasts. The receptors for TR1 were detected on a monocytic cell line (THP‐1) and in human fibroblasts. Scatchard analyses indicated two classes of high and medium‐high affinity receptors with a kD of approximately 45 and 320 pM, respectively. Recombinant TR1 induced proliferation of human foreskin fibroblasts and potentiated TNF‐induced proliferation in these cells. In a coculture system of osteoblasts and bone marrow cells, recombinant TR1 completely inhibited the differentiation of osteoclast‐like multinucleated cell formation in the presence of several bone‐resorbing factors. TR1 also strongly inhibited bone‐resorbing function on dentine slices by mature osteoclasts and decreased 45Ca release in fetal long‐bone organ cultures. Anti‐TR1 monoclonal antibody promoted the formation of osteoclasts in mouse marrow culture assays. These results indicate that TR1 has broad biological activities in fibroblast growth and in osteoclast differentiation and its functions.—Kwon, B. S., Wang, S., Udagawa, N., Haridas, V., Lee, Z. H., Kim, K. K., Oh, K‐O., Greene, J., Li, Y., Su, J., Gentz, R., Aggarwal, B. B., Jian, Ni, J. TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J. 12, 845–854 (1998)
FEBS Letters | 1995
Ichiro Nakamura; Naoyuki Takahashi; Takahisa Sasaki; Nobuyuki Udagawa; Hiroshi Murakami; Koutaro Kimura; Yukihito Kabuyama; Takahide Kurokawa; Tatsuo Suda; Yasuhisa Fukui
The biological role of phosphatidylinositol (PI)‐3 kinase was examined in osteoclast‐like multinucleated cells (OCLs) formed in co‐cultures of mouse osteoblastic cells and bone marrow cells. The expression of PI‐3 kinase in OCLs was confirmed by Western blot analysis. Wortmannin (WT), a specific inhibitor of PI‐3 kinase, inhibited PI‐3 kinase activity in OCLs both in vitro and in vivo. WT also inhibited pit‐forming activity on dentine slices and disrupted a ringed structure of F‐actin‐containing dots (an actin ring) in OCLs in a dose‐dependent manner. The inhibitory profiles of WT for pit and actin ring formation were similar to that for PI‐3 kinase activity in OCLs. Electron microscopic analysis revealed that OCLs treated with WT did not form ruffled borders. Instead, numerous electron lucent vacuoles of differing sizes were found throughout the cytoplasm. These results suggest that PI‐3 kinase is important in osteoclastic bone resorption.
Journal of Immunology | 2003
Kanami Itoh; Nobuyuki Udagawa; Kanichiro Kobayashi; Koji Suda; Xiaotong Li; Masamichi Takami; Nobuo Okahashi; Tatsuji Nishihara; Naoyuki Takahashi
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-α, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-κB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1β, TNF-α, and receptor activator of NF-κB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1β, TNF-α, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.