Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuyuki Zettsu is active.

Publication


Featured researches published by Nobuyuki Zettsu.


Applied Physics Letters | 2010

Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

Aya Fujiki; Takafumi Uemura; Nobuyuki Zettsu; Megumi Akai-Kasaya; Akira Saito; Yuji Kuwahara

A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.


Measurement Science and Technology | 2006

Dual luminophore polystyrene microspheres for pressure-sensitive luminescent imaging

Fletcher Kimura; Gamal Khalil; Nobuyuki Zettsu; Younan Xia; James B. Callis; Martin Gouterman; Larry R. Dalton; Dana Dabiri; Miguel Rodriguez

Polystyrene microspheres containing both an oxygen-sensitive platinum porphyrin luminescence and a pressure-insensitive silicon porphyrin luminescence are prepared in high yield. The ratio of these two luminescences responds reversibly in aerodynamic flows over a wide dynamic range of oxygen concentrations, with a response time of <10 ms. These microspheres have been used in a non-intrusive imaging method to potentially obtain the pressure distributions in three-dimensional aerodynamic flows.


Nano Letters | 2010

Three-Dimensional Electron Density Mapping of Shape-Controlled Nanoparticle by Focused Hard X-ray Diffraction Microscopy

Yukio Takahashi; Nobuyuki Zettsu; Yoshinori Nishino; Ryosuke Tsutsumi; Eiichiro Matsubara; Tetsuya Ishikawa; Kazuto Yamauchi

Coherent diffraction microscopy using highly focused hard X-ray beams allows us to three-dimensionally observe thick objects with a high spatial resolution, also providing us with unique structural information, i.e., electron density distribution, not obtained by X-ray tomography with lenses, atom probe microscopy, or electron tomography. We measured high-contrast coherent X-ray diffraction patterns of a shape-controlled Au/Ag nanoparticle and successfully reconstructed a projection and a three-dimensional image of the nanoparticle with a single pixel (or a voxel) size of 4.2 nm in each dimension. The small pits on the surface and a hollow interior were clearly visible. The Au-rich regions were identified based on the electron density distribution, which provided insight into the formation of Au/Ag nanoboxes.


Nano Letters | 2013

Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses

Yukio Takahashi; Akihiro Suzuki; Nobuyuki Zettsu; Tomotaka Oroguchi; Yuki Takayama; Yuki Sekiguchi; Amane Kobayashi; Masaki Yamamoto; Masayoshi Nakasako

We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.


Applied Physics Letters | 2003

Unconventional polarization characteristic of rapid photoinduced material motion in liquid crystalline azobenzene polymer films

Nobuyuki Zettsu; Takashi Fukuda; Hiro Matsuda; Takahiro Seki

We carried out double-beam interference experiments using an argon ion laser with controlled polarization in order to cause the formation of photoinduced surface relief in liquid crystalline azobenzene polymer films. The irradiation was undertaken on a film in the cis-rich state obtained by a pre-exposure to ultraviolet light. In this procedure, the efficiency of the photoinduced mass transfer was high, more than 1000 times greater than hitherto reported for amorphous azobenzene polymers. This approach revealed the unusual nature of the migration process. Rapid mass migration is promoted by intensity holographic recording, independent of the polarization of the light used for the irradiation. This insensitivity with respect to the polarization of the light led us to the conclusion that rapid mass migration starting from a cis-rich azobenzene polymer is predominately driven by phototriggered elemental processes such as local dewetting, self-organizing motion, and translation diffusion.


Applied Physics Letters | 2011

Multiscale element mapping of buried structures by ptychographic x-ray diffraction microscopy using anomalous scattering

Yukio Takahashi; Akihiro Suzuki; Nobuyuki Zettsu; Yoshiki Kohmura; Kazuto Yamauchi; Tetsuya Ishikawa

We propose an element mapping technique of nano-meso-microscale structures buried within large and/or thick objects by ptychographic x-ray diffraction microscopy using anomalous scattering. We performed quantitative imagings of both the electron density and Au element of Au/Ag nanoparticles at the pixel resolution of better than 10 nm in a field of view larger than 5 × 5 μm2 by directly phasing ptychographic coherent diffraction patterns acquired at two x-ray energies below the Au L3 edge. This method provides us with multiscale structural and elemental information for understanding the element/property relationship linking nanoscale structures to macroscopic functional properties in material and biological systems.


Applied Physics Express | 2011

Enhanced Red-Light Emission by Local Plasmon Coupling of Au Nanorods in an Organic Light-Emitting Diode

Takuya Tanaka; Yuji Totoki; Aya Fujiki; Nobuyuki Zettsu; Yusuke Miyake; Megumi Akai-Kasaya; Akira Saito; Takuji Ogawa; Yuji Kuwahara

A significant increase in the quantum efficiency of an organic red-light-emitting diode was achieved through coupling with localized surface plasmons of Au nanorods with a length of 50–60 nm embedded on the substrate anode. We used 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris(8-hydroxylquinolianato)aluminum(III) (Alq3) as an emission layer. The fabricated diode structure consists of an indium tin oxide (ITO) anode, a Cu phthalocyanine (CuPc) hole transport layer, an Alq3 electron transport layer, a LiF electron injection layer, and an Al cathode. We observed a 3-fold increase in the intensity of molecular fluorescence compared with that of a conventional diode structure.


CrystEngComm | 2013

Flux growth of Sr2Ta2O7 crystals and subsequent nitridation to form SrTaO2N crystals

Yusuke Mizuno; Hajime Wagata; Kunio Yubuta; Nobuyuki Zettsu; Shuji Oishi; Katsuya Teshima

Highly crystalline, idiomorphic Sr2Ta2O7 and SrTaO2N crystals were successfully grown by a SrCl2 flux cooling method and followed by a nitriding treatment using NH3 gas, respectively. The flux-grown Sr2Ta2O7 crystals had a columnar structure with flat and well-developed {010}, {061}, and {150} faces. The lattice parameters of the Sr2Ta2O7 crystals were determined to be a = 0.398, b = 2.716, and c = 0.570 nm. The TEM images indicated that the flux-grown Sr2Ta2O7 crystals had a mature columnar structure with high crystallinity. The shapes and sizes of the SrTaO2N crystals were in good agreement with the original Sr2Ta2O7 crystals, and they consisted of numerous small crystals with approximate dimensions of 50 nm and high crystallinity. The lattice parameters of the SrTaO2N crystals were a = 0.570 and c = 0.809 nm. The optical absorption edges of the Sr2Ta2O7 and SrTaO2N crystals were approximately 275 and 600 nm, respectively, and the band gaps were estimated to be located at 4.5 and 2.1 eV, respectively.


Optics Express | 2009

Figuring of plano-elliptical neutron focusing mirror by local wet etching

Kazuya Yamamura; Mikinori Nagano; Hiroyuki Takai; Nobuyuki Zettsu; Dai Yamazaki; Ryuji Maruyama; K. Soyama; Shoichi Shimada

Local wet etching technique was proposed to fabricate high-performance aspherical mirrors. In this process, only the limited area facing to the small nozzle is removed by etching on objective surface. The desired objective shape is deterministically fabricated by performing the numerically controlled scanning of the nozzle head. Using the technique, a plano-elliptical mirror to focus the neutron beam was successfully fabricated with the figure accuracy of less than 0.5 microm and the focusing gain of 6. The strong and thin focused neutron beam is expected to be a useful tool for the analyses of various material properties.


CrystEngComm | 2014

Low-temperature growth of spinel-type Li1+xMn2−xO4 crystals using a LiCl–KCl flux and their performance as a positive active material in lithium-ion rechargeable batteries

Yusuke Mizuno; Nobuyuki Zettsu; Hikaru Inagaki; Shigeki Komine; Kenichiro Kami; Kunio Yubuta; Hajime Wagata; Shuji Oishi; Katsuya Teshima

Low-temperature growth of idiomorphic spinel-type Li1+xMn2−xO4 (x = 0.09, 0.14) crystals was achieved by using a LiCl–KCl flux. The flux growth driven by rapid cooling resulted in truncated octahedral Li1+xMn2−xO4 crystals surrounded by both dominating {111} and minor {100} faces. The chemical compositions, sizes, and shapes of the Li1+xMn2−xO4 crystals could be tuned by simply changing the growth conditions. Among the various products, the crystals grown at a low temperature of 600 °C showed a small average size of 0.2 μm. The small Li1+xMn2−xO4 crystals grown at 600 °C showed better rate properties than the large crystals grown at 900 °C, when used as a positive active material in lithium-ion rechargeable batteries.

Collaboration


Dive into the Nobuyuki Zettsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge