Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noel O. I. Cogan is active.

Publication


Featured researches published by Noel O. I. Cogan.


BMC Genomics | 2011

Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

Sukhjiwan Kaur; Noel O. I. Cogan; Luke W. Pembleton; Maiko Shinozuka; K. Savin; Michael Materne; John W. Forster

BackgroundLentil (Lens culinaris Medik.) is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality.ResultsTissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs). De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR)-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism.ConclusionsA substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.


Theoretical and Applied Genetics | 2005

QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.).

Noel O. I. Cogan; K. F. Smith; Toshihiko Yamada; Michael G. Francki; Anita C. Vecchies; Elizabeth S. Jones; German Spangenberg; John W. Forster

Genetic control of herbage quality variation was assessed through the use of the molecular marker-based reference genetic map of perennial ryegrass (Lolium perenne L.). The restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and genomic DNA-derived simple sequence repeat-based (SSR) framework marker set was enhanced, with RFLP loci corresponding to genes for key enzymes involved in lignin biosynthesis and fructan metabolism. Quality traits such as crude protein (CP) content, estimated in vivo dry matter digestibility (IVVDMD), neutral detergent fibre content (NDF), estimated metabolisable energy (EstME) and water soluble carbohydrate (WSC) content were measured by near infrared reflectance spectroscopy (NIRS) analysis of herbage harvests. Quantitative trait locus (QTL) analysis was performed using single-marker regression, simple interval mapping and composite interval mapping approaches, detecting a total of 42 QTLs from six different sampling experiments varying by developmental stage (anthesis or vegetative growth), location or year. Coincident QTLs were detected on linkage groups (LGs) 3, 5 and 7. The region on LG3 was associated with variation for all measured traits across various experimental datasets. The region on LG7 was associated with variation for all traits except CP, and is located in the vicinity of the lignin biosynthesis gene loci xlpomt1 (caffeic acid-O-methyltransferase), xlpccr1 (cinnamoyl CoA-reductase) and xlpssrcad 2.1 (cinnamyl alcohol dehydrogenase). Comparative genomics analysis of these gene classes with wheat (Triticum aestivum L.) provides evidence for conservation of gene order over evolutionary time and the basis for cross-specific genetic information transfer. The identification of co-location between QTLs and functionally associated genetic markers is critical for the implementation of marker-assisted selection programs and for linkage disequilibrium studies, which will enable future improvement strategies for perennial ryegrass.


BMC Plant Biology | 2013

SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)

Antonio Leonforte; Shimna Sudheesh; Noel O. I. Cogan; Philip A. Salisbury; Marc E. Nicolas; Michael Materne; John W. Forster; Sukhjiwan Kaur

BackgroundField pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs.ResultsIn this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance.ConclusionThe SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.


BMC Evolutionary Biology | 2010

Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium - Festuca species complex

Melanie L. Hand; Noel O. I. Cogan; Alan V. Stewart; John W. Forster

BackgroundThe agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events.ResultsPutative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype.ConclusionsThis study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers.


Molecular Ecology Resources | 2013

StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations.

Luke W. Pembleton; Noel O. I. Cogan; John W. Forster

Statistical Analysis of Mixed‐Ploidy Populations (StAMPP) is a freely available R package for calculation of population structure and differentiation based on single nucleotide polymorphism (SNP) genotype data from populations of any ploidy level, and/or mixed‐ploidy levels. StAMPP provides an advance on previous similar software packages, due to an ability to calculate pairwise FST values along with confidence intervals, Neis genetic distance and genomic relationship matrixes from data sets of mixed‐ploidy level. The software code is designed to efficiently handle analysis of large genotypic data sets that are typically generated by high‐throughput genotyping platforms. Population differentiation studies using StAMPP are broadly applicable to studies of molecular ecology and conservation genetics, as well as animal and plant breeding.


Virology Journal | 2010

A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome

K. Savin; Benjamin G. Cocks; Frank Wong; Tim Sawbridge; Noel O. I. Cogan; David Savage; Simone Warner

BackgroundWith the exception of the oyster herpesvirus OsHV-1, all herpesviruses characterized thus far infect only vertebrates. Some cause neurological disease in their hosts, while others replicate or become latent in neurological tissues. Recently a new herpesvirus causing ganglioneuritis in abalone, a gastropod, was discovered. Molecular analysis of new herpesviruses, such as this one and others, still to be discovered in invertebrates, will provide insight into the evolution of herpesviruses.ResultsWe sequenced the genome of a neurotropic virus linked to a fatal ganglioneuritis devastating parts of a valuable wild abalone fishery in Australia. We show that the newly identified virus forms part of an ancient clade with its nearest relatives being a herpesvirus infecting bivalves (oyster) and, unexpectedly, one we identified, from published data, apparently integrated within the genome of amphioxus, an invertebrate chordate. Predicted protein sequences from the abalone virus genome have significant similarity to several herpesvirus proteins including the DNA packaging ATPase subunit of (putative) terminase and DNA polymerase. Conservation of amino acid sequences in the terminase across all herpesviruses and phylogenetic analysis using the DNA polymerase and terminase proteins demonstrate that the herpesviruses infecting the molluscs, oyster and abalone, are distantly related. The terminase and polymerase protein sequences from the putative amphioxus herpesvirus share more sequence similarity with those of the mollusc viruses than with sequences from any of the vertebrate herpesviruses analysed.ConclusionsA family of mollusc herpesviruses, Malacoherpesviridae, that was based on a single virus infecting oyster can now be further established by including a distantly related herpesvirus infecting abalone, which, like many vertebrate viruses is neurotropic. The genome of Branchiostoma floridae (amphioxus) provides evidence for the existence of a herpesvirus associated with this invertebrate chordate. The virus which likely infected amphioxus is, by molecular phylogenetic analysis, more closely related to the other 2 invertebrate viruses than to herpesviruses infecting vertebrates (ie chordates).


Diseases of Aquatic Organisms | 2010

Development and validation of a TaqMan ® PCR assay for the Australian abalone herpes-like virus

Serge Corbeil; Axel Colling; Lynette M. Williams; Frank Wong; K. Savin; Simone Warner; Bronwyn Murdoch; Noel O. I. Cogan; Timothy Ivor Sawbridge; Mark Fegan; Ilhan Mohammad; Agus Sunarto; Judith Handlinger; Stephen Pyecroft; Marianne Douglas; Pen H. Chang; Mark St. J. Crane

The recent emergence of a herpes-like virus in both farmed and wild populations of abalone in Victoria, Australia, has been associated with high mortality rates in animals of all ages. Based on viral genome sequence information, a virus-specific real-time TaqMan assay was developed for detection and identification of the abalone herpes-like virus (AbHV). The assay was shown to be specific as it did not detect other viruses from either the Herpesvirales or the Iridovirales orders which have genome sequence similarities. However, the TaqMan assay was able to detect DNA from the Taiwanese abalone herpes-like virus, suggesting a relationship between the Taiwanese and Australian viruses. In addition, the assay detected < 300 copies of recombinant plasmid DNA per reaction. Performance characteristics for the AbHV TaqMan assay were established using 1673 samples from different abalone populations in Victoria and Tasmania. The highest diagnostic sensitivity and specificity were 96.7 (95% CI: 82.7 to 99.4) and 99.7 (95% CI: 99.3 to 99.9), respectively, at a threshold cycle (C(T)) value of 35.8. The results from 2 separate laboratories indicated good repeatability and reproducibility. This molecular assay has already proven useful in confirming presumptive diagnosis (based on the presence of ganglioneuritis) of diseased abalone in Victorian waters as well as being a tool for surveillance of wild abalone stocks in other parts of Australia.


Plant Molecular Biology | 2010

Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (lolium perenne L.)

Hiroshi Shinozuka; Noel O. I. Cogan; K. F. Smith; German Spangenberg; John W. Forster

Perennial ryegrass is an obligate outbreeding pasture grass of the Poaceae family, with a two-locus (S and Z) gametophytic self-incompatibility (SI) mechanism. This system has provided a major obstacle to targeted varietal development, and enhanced knowledge is expected to support more efficient breeding strategies. Comparative genetics and physical mapping approaches have been developed to permit molecular cloning of the SI genes. SI gene-linked genetic markers based on heterologous cDNA restriction fragment length polymorphisms (RFLPs) and homologous genomic DNA-derived simple sequence repeats (SSRs) were converted to single nucleotide polymorphism (SNP) format for efficient genotyping. Genetic mapping identified the location of SI loci and demonstrated macrosynteny between related grass species. S- and Z-linked bacterial artificial chromosome (BAC) clones were sequenced using massively parallel pyrosequencing technology to provide the first physical mapping data for Poaceae SI loci. The sequence assembly process suggested a lower prevalence of middle repetitive sequences in the Z locus region and hence precedence for positional cloning strategy. In silico mapping using data from rice, Brachypodium distachyon and Sorghum revealed high sequence conservation in the vicinity of the Z locus region between SI and self-compatible (SC) grass species. Physical mapping identified a total of nine genes encoded in the Z locus region. Expression profiling and nucleotide diversity assessment identified two Z-linked genes, LpTC116908 and LpDUF247, as plausible candidates for the male and female determinants of the S-Z SI system.


Plant Science | 2014

SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance

Sukhjiwan Kaur; R. B. E. Kimber; Noel O. I. Cogan; Michael Materne; John W. Forster; J. G. Paull

Ascochyta blight, caused by the fungus Ascochyta fabae Speg., is a common and destructive disease of faba bean (Vicia faba L.) on a global basis. Yield losses vary from typical values of 35-40% to 90% under specific environmental conditions. Several sources of resistance have been identified and used in breeding programs. However, introgression of the resistance gene determinants into commercial cultivars as a gene pyramiding approach is reliant on selection of closely linked genetic markers. A total of 14,552 base variants were identified from a faba bean expressed sequence tag (EST) database, and were further quality assessed to obtain a set of 822 high-quality single nucleotide polymorphisms (SNPs). Sub-sets of 336 EST-derived simple sequence repeats (SSRs) and 768 SNPs were further used for high-density genetic mapping of a biparental faba bean mapping population (Icarus×Ascot) that segregates for resistance to ascochyta blight. The linkage map spanned a total length of 1216.8 cM with 12 linkage groups (LGs) and an average marker interval distance of 2.3 cM. Comparison of map structure to the genomes of closely related legume species revealed a high degree of conserved macrosynteny, as well as some rearrangements. Based on glasshouse evaluation of ascochyta blight resistance performed over two years, four genomic regions controlling resistance were identified on Chr-II, Chr-VI and two regions on Chr-I.A. Of these, one (QTL-3) may be identical with quantitative trait loci (QTLs) identified in prior studies, while the others (QTL-1, QTL-2 and QTL-4) may be novel. Markers in close linkage to ascochyta blight resistance genes identified in this study can be further validated and effectively implemented in faba bean breeding programs.


Theoretical and Applied Genetics | 2006

Individual and multi-environment combined analyses identify QTLs for morphogenetic and reproductive development traits in white clover (Trifolium repens L.)

Noel O. I. Cogan; Michael T. Abberton; K. F. Smith; G. A. Kearney; A. H. Marshall; A. Williams; Terry P. T. Michaelson-Yeates; Charlotte Bowen; Elizabeth S. Jones; Anita C. Vecchies; John W. Forster

White clover (Trifolium repens L.) is a key component legume of temperate pasture agriculture and an important target for molecular marker-assisted plant breeding. A genetic map of white clover has been used to assess genetic control of agronomically important traits that vary in the F2(I.4R×I.5J) mapping family. Phenotypic analysis was performed for a range of vegetative morphogenesis traits (such as leaf area, internode length, plant height and plant spread) and reproductive morphogenesis and development traits (such as flowering date, floral intensity and seed yield), with both spatial and temporal replication. A multi-environment combined analysis (combined analysis) has been performed for traits assessed across multiple experimental datasets in order to identify consistent genetic effects. Quantitative trait locus (QTLs) were detected for the majority of traits, and the locations and magnitudes of QTL effects were compared between individual and combined analyses. This molecular genetic dissection of agronomic traits in white clover provides the basis for equivalent studies in more complex populations, design of marker-assisted selection strategies and comparative genetics with model legume species. Selection for QTLs derived from the combined analysis will permit robust improvement of phenotypic traits over different environments.

Collaboration


Dive into the Noel O. I. Cogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. F. Smith

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge