Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noelia Nikoloff is active.

Publication


Featured researches published by Noelia Nikoloff.


Ecotoxicology and Environmental Safety | 2014

The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae).

Juan Manuel Pérez-Iglesias; C. Ruiz de Arcaute; Noelia Nikoloff; L. Dury; Sonia Soloneski; Guillermo S. Natale; Marcelo L. Larramendy

The neonicotinoid insecticide imidacloprid (IMI) affects the insect central nervous system and is successfully applied to control pests for a variety of agricultural crops. In the current study, acute toxicity and genotoxicity of the IMI-containing commercial formulation insecticide Glacoxan Imida (35 percent IMI) was evaluated on Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed under laboratory conditions. A lethal effect was evaluated as the end point for lethality, whereas micronucleus (MN) frequency and DNA single-strand breaks evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Sublethal end points were assayed within the 12.5-37.5mg/L IMI concentration range. Experiments were performed on tadpoles at stage 36 (range, 35-37) according to the classification proposed by Gosner. Lethality studies revealed an LC50 96h value of 52.622mg/L IMI. Increased frequency of MNs was only observed when 25.0mg/L was assayed for 96h, whereas no other nuclear abnormalities were induced. Increase of the genetic damage index was observed at 48h of treatment within the 12.5-37.5mg/L concentration range, whereas an increased frequency of DNA damage was observed only in tadpoles treated with 37.5mg/L IMI for 96h. This study represents the first evidence of the acute lethal and genotoxic effects exerted by IMI on tadpoles of an amphibian species native to Argentina under laboratory conditions.


Ecotoxicology and Environmental Safety | 2014

Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae).

Noelia Nikoloff; Guillermo S. Natale; Damián J.G. Marino; Sonia Soloneski; Marcelo L. Larramendy

Acute toxicity and genotoxicity of the flurochloridone (FLC)-containing commercial formulation herbicides Twin Pack Gold(®) (25 percent a.i.) and Rainbow(®) (25 percent a.i.) were evaluated on Rhinella arenarum (Anura: Bufonidae) tadpoles exposed under laboratory conditions. Lethal effect was evaluated as end point for lethality, whereas frequency of micronuclei (MN) and single cell gel electrophoresis (SCGE) were employed as end points for genotoxicity. Lethality studies revealed equivalent LC-5096 h values of 2.96 and 2.85 mg/L for Twin Pack Gold(®) and Rainbow(®), respectively. Twin Pack Gold(®) did not induce DNA damage at the chromosomal level, whereas Rainbow(®) increased the frequency of MN only when the lowest concentration (0.71 mg/L) was used. However, all concentrations of Twin Pack Gold(®) and Rainbow(®) increased the frequencies of primary DNA lesions estimated by alkaline SCGE. This study represents the first evidence of the acute toxic and genotoxic effects exerted by two FLC-based commercial formulations, Twin Pack Gold(®) and Rainbow(®), on tadpoles of an amphibian species native to Argentina under laboratory conditions. Finally, our findings highlight the importance of minimizing the impacts on nontarget living species exposed to agrochemicals.


Environmental Toxicology | 2014

Comparative evaluation in vitro of the herbicide flurochloridone by cytokinesis-block micronucleus cytome and comet assays.

Noelia Nikoloff; Marcelo L. Larramendy; Sonia Soloneski

The in‐vitro effects of flurochloridone and its formulations Twin Pack Gold® (25% a.i.) and Rainbow® (25% a.i.) were evaluated in Chinese Hamster Ovary K1 (CHO‐K1) cells. The cytokinesis‐block micronucleus cytome (CBMN‐cyt) and single‐cell gel electrophoresis (SCGE) assays were used. The activities were tested within the range of final concentrations of 0.25–15 μg flurochloridone/mL. The results demonstrated that both the flurochloridone and Rainbow® were not able to induce micronuclei (MN). On the other hand, Twin Pack Gold® only increased the frequency of MN at 5 μg/mL. Furthermore, 10 and 15 μg/mL of both formulations resulted in a cellular cytotoxicity demonstrated by alterations in the nuclear division index and cellular death. SCGE assay appeared to be a more sensitive bioassay for detecting primary DNA strand breaks at lower concentrations of flurochloridone than MN did. A marked increase in the genetic damage index was observed when 5 and 15 μg/mL of both flurochloridone and Rainbow® but only when 15 μg/mL of Twin Pack Gold® were used. This is the first report demonstrating that flurochloridone and its two commercial formulations are able to induce single‐strand DNA breaks in vitro on mammalian cells.


Ecotoxicology and Environmental Safety | 2015

Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae)

Juan Manuel Pérez-Iglesias; Sonia Soloneski; Noelia Nikoloff; Guillermo S. Natale; Marcelo L. Larramendy

Acute lethal and sublethal toxicity of the imidazolinone imazethapyr (IMZT)-based commercial formulation herbicide Pivot H® (10.59% IMZT) was evaluated on Hypsiboas pulchellus tadpoles. Whereas mortality was used as the end point for lethality, frequency of micronuclei (MNs) and other nuclear abnormalities as well as DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed to test genotoxicity. Behavioral, growth, developmental, and morphological abnormalities were also employed as sublethal end points. Mortality studies revealed equivalent LC50 (96h) values of 1.49mg/L (confidence limit, 1.09-1.63) and 1.55mg/L (confidence limit, 1.51-1.60) IMZT for Gosner stage (GS) 25 and GS36, respectively. Behavioral changes, i.e., irregular swimming and immobility, as well as a decreased frequency of keratodonts were observed. The herbicide increased the frequency of MNs in circulating erythrocytes of tadpoles exposed for 48h to the highest concentration assayed (1.17mg/L). However, regardless of the concentration of the herbicide assayed, an enhanced frequency of MNs was observed in tadpoles exposed for 96h. The herbicide was able to induce other nuclear abnormalities, i.e., blebbed and notched nuclei, only when tadpoles were exposed for 96h. In addition, we observed that exposure to IMZT within the 0.39-1.17mg/L range increased the genetic damage index in treatments lasting for both 48 and 96h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMZT on amphibians. Finally, our findings highlight the properties of this herbicide that jeopardize nontarget living species exposed to IMZT.


Toxicology in Vitro | 2012

Genotoxic and cytotoxic evaluation of the herbicide flurochloridone on Chinese hamster ovary (CHO-K1) cells.

Noelia Nikoloff; Sonia Soloneski; Marcelo L. Larramendy

The in vitro effects of flurochloridone (FLC) and its formulations Twin Gold Pack® (25% a.i.) and Rainbow® (25% a.i.) were evaluated on Chinese hamster ovary (CHO-K1) cells by genotoxicity [sister chromatid exchange (SCE)] and cytotoxicity [cell-cycle progression, proliferative rate index (PRI), mitotic index (MI), MTT, and neutral red] end points. Cells were treated for 24h within the 0.25-15μg/ml concentration range. FLC and Twin Pack Gold® induced a significant and equivalent increase in SCEs regardless of the concentration. Rainbow®-induced SCEs at concentrations higher than 2.5μg/ml; however, the increases were always lower than those induced by FLC and Twin Pack Gold®. For all compounds, the PRI decreased as a function of the concentration titrated into cultures. Whereas only the highest FLC and Twin Pack Gold® concentrations induced a significant reduction of the MI, all tested Rainbow® concentrations induced MI inhibition. Overall, the results demonstrated that although all compounds were not able to reduce the lysosomal activity, the mitochondrial activity was diminished when the highest concentrations were employed. These observations represent the first study analyzing the genotoxic and cytotoxic effects exerted by FLC and two formulated products on mammalian cells in vitro, at least on CHO-K1 cells.


Toxicology Letters | 2011

A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba.

Norma Viviana González; Noelia Nikoloff; Sonia Soloneski; Marcelo L. Larramendy

The purpose of this study was to further investigate the cytotoxic and genotoxic effects of dicamba and Banvel(®) employing the cytokinesis-block micronucleus cytome (CBMN-cyt) assay estimated by the analysis of the nuclear division index (NDI), the frequency of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs). Besides, for mechanism of MN induction CREST anti-kinetochore antibody analysis was performed. The activities of both compounds were tested within the range of 50-500 μg/ml on Chinese hamster ovary (CHO-K1) cells. Overall, dicamba and Banvel(®) produced a NDI dose-dependent decrease but the response was statistically significant only in cultures treated with Banvel(®) at a 100-500 μg/ml concentration range. A dose-dependent induction of MN was observed after dicamba- and Banvel(®)-treatments within the 50-400 μg/ml and 50-500 μg/ml concentration-ranges, respectively. Induction of NPBs and NBUDs was significantly enhanced by both test compounds. The NPBs/MN ratio values found for dicamba and Banvel(®) were 0.04-0.11 and 0.05-0.18, respectively. Results clearly demonstrated that dicamba and Banvel(®) exerted both cyto- and genotoxic damage on CHO-K1 cells. Furthermore, the CBMN-cyt assay employed confirmed our previous investigations concerning the cellular and DNA damaging capabilities of dicamba and highlights that both clastogenic and aneugenic mechanisms are implicated in the MN induction.


Food and Chemical Toxicology | 2014

Assessment of DNA damage, cytotoxicity, and apoptosis in human hepatoma (HepG2) cells after flurochloridone herbicide exposure.

Noelia Nikoloff; Marcelo L. Larramendy; Sonia Soloneski

In vitro effects of flurochloridone (FLC) and its formulations Twin Pack Gold® [25% active ingredient (a.i.)] and Rainbow® (25% a.i.) were evaluated in HepG2 cells. Whereas cytokinesis-blocked micronucleus cytome (CBMN-cyt) and single-cell gel electrophoresis (SCGE) assays were employed for genotoxicity, MTT, neutral red, and apoptosis detections were used for cytotoxicity evaluation. Activities were tested within the concentration range of 0.25-15μg/ml FLC. Results demonstrated that neither FLC nor Rainbow® was able to induce MNs. On the other hand, 5μg/ml Twin Pack Gold® only increased MN frequency. Furthermore, 10 and 15μg/ml of both formulations resulted in cellular cytotoxicity demonstrated by alterations in the nuclear division index and cellular death. A marked increase in the genetic damage index was observed after treatment with all compounds. SCGE assay appeared to be more sensitive bioassay for detecting primary DNA strand breaks at lower concentrations of FLC than did MN. Our results reveal that FLC and its two formulations trigger apoptosis on HepG2 cells. The results represent the first experimental evidence of the in vitro apoptogenic role exerted on mammalian cells by FLC and the FLC-based formulations Rainbow® and Twin Pack Gold®, at least on HepG2 cells.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016

Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells

Sonia Soloneski; Noelia Nikoloff; Marcelo L. Larramendy

Cytotoxic and genotoxic effects of flurochloridone (FLC) and its formulations Twin Pack Gold(®) and Rainbow(®) were evaluated in CHO-K1 cells. Using the alkaline single-cell gel electrophoresis (SCGE) assay, we observed that FLC (15 μg/ml), Twin Pack Gold(®) or Rainbow(®) induced primary DNA damage, increasing the frequency of damaged nucleoids. Vitamin E pretreatment did not modify the effect. Decreased cell viability was observed only in Twin Pack Gold(®)-treated cultures and was significantly ameliorated by vitamin E. Post-treatment of herbicide-damaged CHO-K1 cells with the enzymes Endo III or Fpg did not increase FLC-, Twin Pack Gold(®)-, or Rainbow(®)-induced DNA damage. These results demonstrate that neither FLC nor FLC-based formulations induce DNA damage through hydroxyl radical or lipid alkoxyl radical production, and that the induced DNA lesions were not related to oxidative damage at the purine/pyrimidine level. Our observations strongly suggest that the cytotoxic effects observed after Twin Pack Gold(®) exposure are due to the excipients contained within the technical formulation rather than FLC itself.


Food and Chemical Toxicology | 2013

Comparative study of cytotoxic and genotoxic effects induced by herbicide S-metolachlor and its commercial formulation Twin Pack Gold® in human hepatoma (HepG2) cells

Noelia Nikoloff; Luciana Escobar; Sonia Soloneski; Marcelo L. Larramendy

The in vitro effects of S-metolachlor and its formulation Twin Pack Gold(®) (96% a.i.) were evaluated in human hepatoma (HepG2) cells. Cytokinesis-blocked micronucleus cytome (CBMN-cyt) and MTT assays as well as Neutral Red uptake were employed for genotoxicity and cytotoxicity evaluation. Activities were tested within the concentration range of 0.25-15 μg/ml S-metolachlor for 24h of exposure. Both compounds rendered a minor reduction in the NDI although not reaching statistical significance. Results demonstrated that the S-metolachlor was not able to induce MNs. On the other hand, 0.5-6 μg/ml Twin Pack Gold(®) increased the frequency of MNs. When cytotoxicity was estimated, S-metolachlor was not able to induce either a reduction of lysosomal or mitochondrial activity. Contrarily, whereas 1-15 μg/ml Twin Pack Gold(®) induced a significant reduction of mitochondrial activity, all tested concentrations of the formulated product induced a significant decrease of lysosomal performance as a function of the concentration of the S-metolachlor-based formulation titrated into cultures. Genotoxicity and cytotoxicity differences obtained with pure S-metolachlor and the commercial S-metolachlor-based formulation indicate that the latter may contain additional unsafe xenobiotics and support the concept of the importance of evaluating not only the active principle but also the commercial formulation when estimating the real hazard from agrochemicals.


Journal of Environmental and Analytical Toxicology | 2014

Genotoxicity and Cytotoxicity Exerted by Pesticides in Different Biotic Matrices-An Overview of More Than a Decade of Experimental Evaluation

Marcelo L. Larramendy; Noelia Nikoloff; C Ruiz de Arcaute; Sonia Soloneski

Agrochemicals represent one of the most important sources of environmental pollution. Although attempts to reduce agrochemical use through organic agricultural practices and the use of other technologies to control pests continue, the problem is still unsolved. Recent technological advances in molecular biology and analytical science have allowed the development of rapid, robust, and sensitive diagnostic tests (biomarkers) that can be used to monitor exposure to, and the effects of pollution. One of the major goals of our research laboratory is to evaluate comparatively the genotoxic and cytotoxic effects exerted by several pure agrochemicals and their technical formulations commonly used in Argentina on vertebrate cellsin vitro and in vivo employing several end-points for geno and cytotoxicity. Among them are listed the herbicides dicamba and flurochloridone, the fungicide zineb, the insecticides pirimicarb and imidacloprid. Overall, the results clearly demonstrated that the damage induced by the commercial formulations is in general greater than that produced by the pure pesticides, suggesting the presence of deleterious components in the excipients with either a putative intrinsic toxic effect or with the capacity of exacerbating the toxicity of the pure agrochemicals, or both. Accordingly, the results highlight that: 1) A complete knowledge of the toxic effect/s of the active ingredient is not enough in biomonitoring studies; 2) Pesticide/s toxic effect/s should be evaluated assaying to the commercial formulation available in market; 3) The deleterious effect/s of the excipient/s present within the commercial formulation should not be either discarded nor underestimated, and 4) A single bioassay is not enough to characterize the toxicity of a agrochemical under study.

Collaboration


Dive into the Noelia Nikoloff's collaboration.

Top Co-Authors

Avatar

Marcelo L. Larramendy

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Sonia Soloneski

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Cecilia Furnus

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Juan Mateo Anchordoquy

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillermo S. Natale

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Ana M. Pascua

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matías Ángel Sirini

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

C. Ruiz de Arcaute

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge