Noemí Fabelo
University of La Laguna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noemí Fabelo.
Journal of Alzheimer's Disease | 2010
Virginia Martín; Noemí Fabelo; Gabriel Santpere; Berta Puig; Raquel Marin; Isidre Ferrer; Mario Díaz
Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimers disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.
Neurobiology of Aging | 2014
Noemí Fabelo; Virginia Martín; Raquel Marin; Dolores Moreno; Isidre Ferrer; Mario Díaz
The presence of lipid alterations in lipid rafts from the frontal cortex in late stages of Alzheimers disease (AD) has been recently demonstrated. Here, we have isolated and analyzed the lipid composition of lipid rafts from different brain areas from control and AD subjects at initial neuropathologic stages. We have observed that frontal cortex lipid rafts are profoundly altered in AD brains from the earliest stages of AD, namely AD I/II. These changes in the lipid matrix of lipid rafts affected both lipid classes and fatty acids and were also detected in the entorhinal cortex, but not in the cerebellum from the same subjects. Paralleling these changes, lipid rafts from AD frontal and entorhinal cortices displayed higher anisotropy for environment-sensitive probes, indicating that lipid changes in AD lipid rafts increased membrane order and viscosity in these domains. The pathophysiological consequences of these alterations in the development and progression of AD were strengthened by the significant, and specific, accumulation of β-secretase within the lipid rafts of AD subjects even at the earliest stages. Our results provide a mechanistic connection between lipid alterations in these microdomains and amyloidogenic processing of amyloid precursor protein.
Journal of Neuropathology and Experimental Neurology | 2012
Noemí Fabelo; Virginia Martín; Raquel Marin; Gabriel Santpere; Ester Aso; Isidro Ferrer; Mario Díaz
Abstract Altered lipid raft homeostasis has been considered to contribute to cellular deregulation, leading to neuronal loss in Alzheimer disease. Alterations in these microdomains affect amyloid precursor protein (APP) processing, resulting in neurotoxic conditions, but modifications of the molecular structure of lipid rafts in Alzheimer disease model mice have not been characterized. Using a lipidomic approach, we investigated frontal cortex lipid rafts inwild-type mice and in double-transgenic APP/presenilin 1 (PS1) mice. Lipid rafts in wild-type mice undergo age-dependent modifications, that is, decreased cholesterol and sterol esters levels, augmented sphingomyelin and saturated fatty acid content, and increased phospholipids/cholesterol ratio. These age-dependent changes were more dramatic and occurred earlier in APP/PS1 mice; other lipid classes (e.g. sulfatides) and essential long-chain polyunsaturated fatty acids (including docosahexaenoic and arachidonic acids) were also affected. Steady state anisotropy measurements demonstrated that APP/PS1 animals exhibit more viscous (membrane-ordered) lipid rafts and that this is mainly attributable to reduced unsaturation of phospholipids and increased sphingomyelin levels rather than to changes in cholesterol. In summary, we demonstrate that aging is accompanied by alteration of the physicochemical structure of lipid raft microdomains. This “lipid raft aging,” a metaphenomenon, is considerably exacerbated by the induced amyloid burden in APP/PS1 genotype.
Journal of Alzheimer's Disease | 2014
Mario Díaz; Noemí Fabelo; Virginia Martín; Isidre Ferrer; Tomás Gómez; Raquel Marin
In the present study, we have assessed the biophysical properties of lipid rafts from different brain areas in subjects exhibiting early neuropathological stages of Alzheimers disease (AD). By means of steady-state fluorescence polarization analyses using two environment-sensitive fluorescent probes, we demonstrate that lipid rafts from cerebellum, and frontal and entorhinal cortices, exhibit different biophysical behaviors depending on the stage of the disease. Thus, while membrane anisotropies were similar in the cerebellum along stages, lipid rafts from frontal and entorhinal cortices at AD stages I/II and AD III were significantly more liquid-ordered than in control subjects, both at the aqueous interface and hydrophobic core of the raft membrane. Thermotropic analyses demonstrated the presence of Arrhenius breakpoints between 28.3-32.0 °C, which were not influenced by the disease stage. However, analyses of membrane microviscosity (ηapp) demonstrate that frontal and entorhinal lipid rafts are notably more viscous and liquid-ordered all across the membrane from early stages of the disease. These physicochemical alterations in lipid rafts do not correlate with changes in cholesterol or sphingomyelin levels, but to reduced unsaturation index and increased saturate/polyunsaturated ratios in phospholipid acyl chains. Moreover, we demonstrate that β-secretase/AβPP (amyloid-β protein precursor) interaction and lipid raft microviscosity are strongly, and positively, correlated in AD frontal and entorhinal cortices. These observations strengthens the hypothesis that physical properties of these microdomains modulate the convergence of amyloidogenic machinery toward lipid rafts, and also points to a critical role of polyunsaturated fatty acids in amyloidogenic processing of AβPP.
Journal of Neurochemistry | 2014
Verónica Casañas-Sánchez; José A. Pérez; Noemí Fabelo; Antonio V. Herrera-Herrera; Cecilia Fernández; Raquel Marin; María del Carmen González-Montelongo; Mario Díaz
Docosahexaenoic acid (DHA, 22:6n‐3) is a major constituent of nerve cell membrane phospholipids. Besides a role in membrane architecture, DHA is a pleiotropic molecule involved in multiple facets of neuronal biology and also in neuroprotection. We show here that supplementation with DHA (but not arachidonic acid) to mouse hippocampal HT22 cells modulates the expression of genes encoding for antioxidant proteins associated with thioredoxin/peroxiredoxin and glutathione/glutaredoxin systems. Thus, within the thioredoxin system, DHA increased Txn1‐2, Trxrd1‐2, Prdx3, and Srxn1 gene expression. Paralleling these changes, DHA increased thioredoxin reductase activity, the main enzyme involved in thioredoxin regeneration. For the glutathione system, the most important change triggered by DHA was the upregulation of Gpx4 gene, encoding for the nuclear, cytosolic and mitochondrial isoforms of phospholipid‐hydroperoxide glutathione peroxidase (PH‐GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation), which was followed by a significant increase in total glutathione peroxidase and GPx4 activities. Noticeably, DHA also upregulated a new Gpx4 splicing variant that retained part of the first intronic region. Finally, we demonstrate that DHA treatment, under the same time course, protects HT22 cells from the oxitoxic exposure to amyloid beta (Aβ25–35) peptide. Altogether, our data pinpoint to a role of DHA as Indirect Antioxidant that modulates neuronal defences in neuroprotection.
Frontiers in Physiology | 2012
Mario Díaz; Noemí Fabelo; Raquel Marin
Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT) and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-amino)phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene), we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviors, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity ηapp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. ηapp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-β-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol, and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of Alzheimers Disease.
Frontiers in Physiology | 2015
Verónica Casañas-Sánchez; José Antonio Pérez Pérez; Noemí Fabelo; David Quinto-Alemany; Mario Díaz
Docosahexaenoic acid (DHA, 22:6n-3) is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic, and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4), the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and, to a lesser extent in APP/PS1 transgenic mice, a familial model of Alzheimers disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a Gpx4 CIRT (Cytoplasmic Intron-sequence Retaining Transcripts), a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the “sentinel RNA hypothesis” would expand the ability of Gpx4 (and DHA) to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear compartment. We discuss here, the crucial role of this novel transcriptional regulation triggered by DHA in the context of normal and pathological hippocampal cell.
Journal of Neuroendocrinology | 2013
Raquel Marin; V. Casañas; José A. Pérez; Noemí Fabelo; Cecilia Fernández; Mario Díaz
Oestrogens trigger several pathways at the plasma membrane that exert beneficial actions against neurodegenerative diseases, such as Alzheimers disease and Parkinsons disease. Part of these actions takes place in lipid rafts, which are membrane domains with a singular protein and lipid composition. These microdomains also represent a preferential site for signalling protein complexes, or signalosomes. A plausible hypothesis is that the dynamic interaction of signalosomes with different extracellular ligands may be at the basis of neuronal maintenance against different neuropathologies. Oestrogen receptors are localised in neuronal lipid rafts, taking part of macromolecular complexes together with a voltage‐dependent anion channel (VDAC), and other molecules. Oestradiol binding to its receptor at this level enhances neuroprotection against amyloid‐β degeneration through the activation of different signal transduction pathways, including VDAC gating modulation. Moreover, part of the stability and functionality of signalling platforms lays on the distribution of lipid hallmarks in these microstructures, which modulate membrane physicochemical properties, thus favouring molecular interactions. Interestingly, recent findings indicate a potential role of oestrogens in the preservation of neuronal membrane physiology related to lipid homeostasis. Thus, oestrogens and docosahexaenoic acid may act synergistically to stabilise brain lipid structure by regulating neuronal lipid biosynthetic pathways, suggesting that part of the neuroprotective effects elicited by oestrogens occur through mechanisms aimed at preserving lipid homeostasis. Overall, oestrogen mechanisms of neuroprotection may occur not only by its interaction with neuronal protein targets through nongenomic and genomic mechanisms, but also through its participation in membrane architecture stabilisation via ‘lipostatic’ mechanisms.
Neurobiology of Aging | 2017
Raquel Marin; Noemí Fabelo; Virginia Martín; Paula Garcia-Esparcia; Isidre Ferrer; David Quinto-Alemany; Mario Díaz
Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimers disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the β-amyloidogenic pathway, including β-amyloid precursor protein, presenilin 1, β-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinsons disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the β-amyloidogenic pathway in DLB can facilitate generation of β-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimers disease pathology, particularly β-amyloid deposition, in DLB.
Journal of Neuroendocrinology | 2012
Noemí Fabelo; V. Martin; C. González; A. Alonso; Mario Díaz
To determine the involvement of physiological doses of oestradiol on brain lipid composition, we have analysed the lipid class and fatty acid composition of phospholipids in the brain from pregnant and 17β‐oestradiol‐treated rats. Rats were randomly divided into three groups: ovariectomised control (OVX + VEH), ovariectomised oestradiol‐treated (OVX + E2) and pregnant (PREG) rats. Rats from the OVX + E2 group were injected daily with different doses of 17β‐oestradiol mimicking the plasma levels observed during pregnancy. Analyses of brain lipid class composition showed that physiological doses of oestradiol increased cholesterol levels of the OVX + E2 group compared to the OVX + VEH group. It was also found that cholesterol levels in the PREG group were significantly lower than in the OVX + VEH and OVX + E2 groups, indicating the involvement of gestational hormones other than oestradiol in the regulation of brain cholesterol during pregnancy. Brains from pregnant rats also exhibited reduced levels of plasmalogens and saturated fatty acids compared to the ovariectomised groups, especially in the second half of pregnancy. Interestingly, analyses of fatty acid composition of phospholipids revealed that physiological doses of oestradiol increased brain docosahexaenoic acid (DHA; 22:6 n‐3) levels. Moreover, DHA levels in pregnant rats were similar to those observed in the OVX + E2 group at all stages, suggesting that oestradiol is the main hormone in the regulation of brain DHA levels during pregnancy. Liver appears to be the major source for n‐3 and n‐6 long chain polyunsaturated fatty acids (LCPUFAs) DHA and arachidonic acid, which are released and transported to the maternal brain and the developing foetus under the influence of oestrogens. We also observed that the largest depots of n‐3 and n‐6 LCPUFA precursors (linolenic acid and linoleic acid, respectively) occur in adipose tissue triglycerides, which, in turn are significantly increased during pregnancy. Our observations are in accordance with an oestradiol‐induced increased bioavailability of brain DHA in pregnant rats. We hypothesise that the reduction of maternal brain DHA observed at the end of pregnancy is a result of the very high demand DHA of foetal brain, which overcomes the maximal maternal (and likely foetal) capacity for de novo DHA synthesis in the liver and brain.