Noga Friedman
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noga Friedman.
Journal of the American Chemical Society | 2010
Izhar Ron; Lior Sepunaru; Stella Itzhakov; Tatyana Belenkova; Noga Friedman; Israel Pecht; Mordechai Sheves; David Cahen
Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied intensively in aqueous solutions. Over the past decade, attempts were made to integrate proteins into solid-state junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules in the junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer junctions, assembled on a Si platform, of proteins of three different families: azurin (Az), a blue-copper ET protein, bacteriorhodopsin (bR), a membrane protein-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (I-V) measurements on such junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanism(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such biomolecules as current-carrying elements in solid-state electronic devices.
Chemical Physics | 1999
Aaron Lewis; Artium Khatchatouriants; Millet Treinin; Zhongping Chen; Gadi Peleg; Noga Friedman; Oleg Bouevitch; Zvi Rothman; Leslie M. Loew; Mordechai Sheres
Abstract Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Debabrata Mishra; Tal Z. Markus; Ron Naaman; Matthias Kettner; Benjamin Göhler; H. Zacharias; Noga Friedman; Mordechai Sheves; Claudio Fontanesi
Significance The role of the electron spin in chemistry and biology has been receiving much attention because of a plausible relation to electromagnetic field effects on living organisms. Part of the difficulty in studying the subject arises from the lack of a physical model that can rationalize these phenomena. Recently the chiral-induced spin selectivity effect was observed in electron transmission through organic molecules. The question is to what extent the effect takes place in proteins. In the present study, we probed bacteriorhodopsin embedded in its native membrane environment. We observed clear evidence for spin-dependent electron transmission through this system. The results point to the possibility that the effect may play a role in electron transfer in biological systems. Spin-dependent photoelectron transmission and spin-dependent electrochemical studies were conducted on purple membrane containing bacteriorhodopsin (bR) deposited on gold, aluminum/aluminum-oxide, and nickel substrates. The result indicates spin selectivity in electron transmission through the membrane. Although the chiral bR occupies only about 10% of the volume of the membrane, the spin polarization found is on the order of 15%. The electrochemical studies indicate a strong dependence of the conduction on the protein’s structure. Denaturation of the protein causes a sharp drop in the conduction through the membrane.
Journal of the American Chemical Society | 2012
Lior Sepunaru; Noga Friedman; Israel Pecht; Mordechai Sheves; David Cahen
Electron transport (ETp) across bacteriorhodopsin (bR), a natural proton pump protein, in the solid state (dry) monolayer configuration, was studied as a function of temperature. Transport changes from thermally activated at T > 200 K to temperature independent at <130 K, similar to what we have observed earlier for BSA and apo-azurin. The relatively large activation energy and high temperature stability leads to conditions where bR transports remarkably high current densities above room temperature. Severing the chemical bond between the protein and the retinal polyene only slightly affected the main electron transport via bR. Another thermally activated transport path opens upon retinal oxime production, instead of or in addition to the natural retinal. Transport through either or both of these paths occurs on a background of a general temperature-independent transport. These results lead us to propose a generalized mechanism for ETp across proteins, in which tunneling and hopping coexist and dominate in different temperature regimes.
Chemical Physics Letters | 1999
Tong Ye; Erez Gershgoren; Noga Friedman; Michael Ottolenghi; M. Sheves; Sanford Ruhman
Abstract The evolution of stimulated emission from the reactive excited state of bacteriorhodopsin is compared with that of a modified protein containing a synthetic retinal which is unable to twist around the C 13 C 14 bond. The rise of the emission is demonstrated to be structured, multistaged and wavelength dependent, appearing later in the red edge of the emission bands in both proteins. Spectral modulations associated with vibronic wavepacket motion are also observed in both. The mechanism of strong Stokes shifting of the emission resolved here, and the nature of coherences observed in the excited state are discussed.
Biophysical Journal | 1989
Amnon Albeck; Noga Friedman; M. Ottolenghi; Mordechai Sheves; C.M. Einterz; S.J. Hug; J.W. Lewis; D.S. Kliger
The photolysis intermediates of an artificial bovine rhodopsin pigment, cis-5,6-dihydro-isorhodopsin (cis-5,6,-diH-ISORHO, lambda max 461 nm), which contains a cis-5,6-dihydro-9-cis-retinal chromophore, are investigated by room temperature, nanosecond laser photolysis, and low temperature irradiation studies. The observations are discussed both in terms of low temperature experiments of Yoshizawa and co-workers on trans-5,6-diH-ISORHO (Yoshizawa, T., Y. Shichida, and S. Matuoka. 1984. Vision Res. 24: 1455-1463), and in relation to the photolysis intermediates of native bovine rhodopsin (RHO). It is suggested that in 5,6-diH-ISORHO, a primary bathorhodopsin intermediate analogous to the bathorhodopsin intermediate (BATHO) of the native pigment, rapidly converts to a blue-shifted intermediate (BSI, lambda max 430 nm) which is not observed after photolysis of native rhodopsin. The analogs from lumirhodopsin (LUMI) to meta-II rhodopsin (META-II) are generated subsequent to BSI, similar to their generation from BATHO in the native pigment. It is proposed that the retinal chromophore in the bathorhodopsin stage of 5,6-diH-ISORHO is relieved of strain induced by the primary cis to trans isomerization by undergoing a geometrical rearrangement of the retinal. Such a rearrangement, which leads to BSI, would not take place so rapidly in the native pigment due to ring-protein interactions. In the native pigment, the strain in BATHO would be relieved only on a longer time scale, via a process with a rate determined by protein relaxation.
FEBS Letters | 1997
X Fu; S Bressler; Michael Ottolenghi; Tamar Eliash; Noga Friedman; M. Sheves
The spectrum (the purple↔blue transition) and function of the light‐driven proton pump bacteriorhodopsin are determined by the state of protonation of the Asp‐85 residue located in the vicinity of the retinal chromophore. The titration of Asp‐85 is controlled by the binding/unbinding of one or two divalent metal cations (Ca2+ or Mg2+). The location of such metal binding site(s) is approached by studying the kinetics of the cation‐induced titration of Asp‐85 using metal ions and large molecular cations, such as quaternary ammonium ions, R4N+ (R=Et, Pr, a divalent ‘bolaform ion’ [Et3N+‐(CH2)4‐N+Et3] and the 1:3 molecular complex formed between Fe2+ and 1,10‐phenanthroline (OP). The basic multi‐component kinetic features of the titration, extending from 10−2 to 104 s, are unaffected by the charge and size of the cation. This indicates that cation binding to bR triggers the blue→purple titration in a fast step, which is not rate‐determining. In view of the size of the cations involved, these observations indicate that the cation binding site is in an exposed location on, or close to, the membrane surface. This excludes previous models, which placed the color‐controlling Ca2+ ion in the retinal binding pocket.
Nano Letters | 2015
Hila Einati; Debabrata Mishra; Noga Friedman; Mordechai Sheves; Ron Naaman
The role of the electron spin in chemistry and biology has received much attention recently owing to to the possible electromagnetic field effects on living organisms and the prospect of using molecules in the emerging field of spintronics. Recently the chiral-induced spin selectivity effect was observed by electron transmission through organic molecules. In the present study, we demonstrated the ability to control the spin filtering of electrons by light transmitted through purple membranes containing bacteriorhodopsin (bR) and its D96N mutant. The spin-dependent electrochemical cyclic voltammetry (CV) and chronoamperometric measurements were performed with the membranes deposited on nickel substrates. High spin-dependent electron transmission through the membranes was observed; however, after the samples were illuminated by 532 nm light, the spin filtering in the D96N mutant was dramatically reduced whereas the light did not have any effect on the wild-type bR. Beyond demonstrating spin-dependent electron transmission, this work also provides an interesting insight into the relationship between the structure of proteins and spin filtering by conducting electrons.
Biochemistry | 2001
Amir Aharoni; Bixue Hou; Noga Friedman; Michael Ottolenghi; Rousso I; Sanford Ruhman; M. Sheves; Tong Ye; Q. Zhong
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the “critical” C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.
Journal of Physical Chemistry B | 2013
Amir Wand; Boris Loevsky; Noga Friedman; Mordechai Sheves; Sanford Ruhman
Photochemistry of bacteriorhodopsin (bR), anabaena sensory rhodopsin (ASR), and all-trans retinal protonated Schiff base (RPSB) in ethanol is followed with femtosecond pump-hyperspectral near-IR (NIR) probe spectroscopy. This is the first systematic probing of retinal protein photochemistry in this spectral range. Stimulated emission of the proteins is demonstrated to extend deep into the NIR, and to decay on the same characteristic time scales previously determined by visible probing. No signs of a transient NIR absorption band above λpr > 1.3 μm, which was recently reported and is verified here for the RPSB in solution, is observed in either protein. This discrepancy demonstrates that the protein surroundings change photochemical traits of the chromophore significantly, inducing changes either in the energies or couplings of photochemically relevant electronic excited states. In addition, low-frequency and heavily damped spectral modulations are observed in the NIR signals of all three systems up to 1.4 μm. By background subtraction and Fourier analysis they are shown to resemble wave packet signatures in the visible, stemming from multiple vibrational modes and by analogy are assigned to torsional wave packets in the excited state of the retinal chromophore. Differences in the vibrational frequencies between the three samples and the said discrepancy in transient spectra are discussed in terms of opsin effects on the RPSB electronic structure.