Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nongnong Shi is active.

Publication


Featured researches published by Nongnong Shi.


Scientific Reports | 2011

Mobile FT mRNA contributes to the systemic florigen signalling in floral induction.

Chunyang Li; Mei Gu; Nongnong Shi; Hang Zhang; Xin Yang; Toba Osman; Yule Liu; Huizhong Wang; Manu Vatish; Stephen D. Jackson; Yiguo Hong

In inducing photoperiodic conditions, plants produce a signal dubbed “florigen” in leaves. Florigen moves through the phloem to the shoot apical meristem (SAM) where it induces flowering. In Arabidopsis, the FLOWERING LOCUS T (FT) protein acts as a component of this phloem-mobile signal. However whether the transportable FT mRNA also contributes to systemic florigen signalling remains to be elucidated. Using non-conventional approaches that exploit virus-induced RNA silencing and meristem exclusion of virus infection, we demonstrated that the Arabidopsis FT mRNA, independent of the FT protein, can move into the SAM. Viral ectopic expression of a non-translatable FT mRNA promoted earlier flowering in the short-day (SD) Nicotiana tabacum Maryland Mammoth tobacco in SD. These data suggest a possible role for FT mRNA in systemic floral signalling, and also demonstrate that cis-transportation of cellular mRNA into SAM and meristem exclusion of pathogenic RNAs are two mechanistically distinct processes.


Scientific Reports | 2015

Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening.

Weiwei Chen; Junhua Kong; Tongfei Lai; Kenneth Manning; Chaoqun Wu; Ying Wang; Cheng-Feng Qin; Bin Li; Zhiming Yu; Xian Zhang; Meiling He; Pengcheng Zhang; Mei Gu; Xin Yang; Atef Mahammed; Chunyang Li; Toba Osman; Nongnong Shi; Huizhong Wang; Stephen D. Jackson; Yule Liu; Philippe Gallusci; Yiguo Hong

In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato.


Scientific Reports | 2015

Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening

Weiwei Chen; Junhua Kong; Cheng Qin; Sheng Yu; Jinjuan Tan; Yun-Ru Chen; Chaoqun Wu; Hui Wang; Yan Shi; Chunyang Li; Bin Li; Pengcheng Zhang; Ying Wang; Tongfei Lai; Zhiming Yu; Xian Zhang; Nongnong Shi; Huizhong Wang; Toba Osman; Yule Liu; Kenneth Manning; Stephen D. Jackson; Dominique Rolin; Silin Zhong; Graham B. Seymour; Philippe Gallusci; Yiguo Hong

Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally. Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that there is likely a concerted effect of different methyltransferases at the Cnr locus and the plant-specific SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype.


Scientific Reports | 2012

Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana

Cheng Qin; Nongnong Shi; Mei Gu; Hang Zhang; Bin Li; Jiajia Shen; Atef Mohammed; Eugene V. Ryabov; Chunyang Li; Huizhong Wang; Yule Liu; Toba Osman; Manu Vatish; Yiguo Hong

In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6–10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells.


Scientific Reports | 2012

Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening.

Tao Zhou; Hang Zhang; Tongfei Lai; Cheng Qin; Nongnong Shi; Huizhong Wang; Mingfei Jin; Silin Zhong; Zaifeng Fan; Yule Liu; Zirong Wu; Stephen D. Jackson; James J. Giovannoni; Dominique Rolin; Philippe Gallusci; Yiguo Hong

Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato.


Plant Physiology | 2017

Roles of Dicer-Like proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing

Cheng Qin; Bin Li; Yaya Fan; Xian Zhang; Zhiming Yu; Eugene V. Ryabov; Mei Zhao; Hui Wang; Nongnong Shi; Pengcheng Zhang; Stephen D. Jackson; Mahmut Tör; Qi Cheng; Yule Liu; Philippe Gallusci; Yiguo Hong

DCL4 inhibited intercellular VIGS, whereas DCL2 along with DCL2-processed/dependent siRNAs were involved in non-cell-autonomous VIRS in Nicotiana benthamiana. RNA silencing is an innate antiviral mechanism conserved in organisms across kingdoms. Such a cellular defense involves DICER or DICER-LIKEs (DCLs) that process plant virus RNAs into viral small interfering RNAs (vsiRNAs). Plants encode four DCLs that play diverse roles in cell-autonomous intracellular virus-induced RNA silencing (known as VIGS) against viral invasion. VIGS can spread between cells. However, the genetic basis and involvement of vsiRNAs in non-cell-autonomous intercellular VIGS remains poorly understood. Using GFP as a reporter gene together with a suite of DCL RNAi transgenic lines, here we show that despite the well-established activities of DCLs in intracellular VIGS and vsiRNA biogenesis, DCL4 acts to inhibit intercellular VIGS whereas DCL2 is required (likely along with DCL2-processed/dependent vsiRNAs and their precursor RNAs) for efficient intercellular VIGS trafficking from epidermal to adjacent cells. DCL4 imposed an epistatic effect on DCL2 to impede cell-to-cell spread of VIGS. Our results reveal previously unknown functions for DCL2 and DCL4 that may form a dual defensive frontline for intra- and intercellular silencing to double-protect cells from virus infection in Nicotiana benthamiana.


Virology Journal | 2011

Influence of retinoblastoma-related gene silencing on the initiation of DNA replication by African cassava mosaic virus Rep in cells of mature leaves in Nicotiana benthamiana plants

Gareth Bruce; Mei Gu; Nongnong Shi; Yule Liu; Yiguo Hong

BackgroundGeminiviruses mainly infect terminally differentiated tissues and cells in plants. They need to reprogramme host cellular machinery for DNA replication. This process is thought to be mediated by inactivation of cell-cycle repressor proteins and by induction of host DNA synthesis protein expression through actions of the geminviral replication initiator protein (Rep).FindingsExploiting a Nicotiana benthamiana pOri2 line, which is transformed with a transgene consisting of a direct repeat of the African cassava mosaic virus (ACMV)-replication origin (Ori) flanking a non-viral DNA region, and virus-induced RNA silencing (VIGS), the impact of host gene expression on replication of the ACMV-derived replicon was investigated. The ACMV Rep trans-replicated the viral episomal replicon in leaves of young but not older pOri2 plants. Upon VIGS-mediated down-regulation of N. benthamiana NbRBR1, the retinoblastoma-related protein gene coding for a negative cell-cycle suppressor, recovered the ability of ACMV Rep for trans DNA replication, whereas the silencing of NbPCNA coding for the sliding clamp of DNA polymerase had no effect.ConclusionsThese results suggest that the cellular machinery for DNA replication in differentiated tissues of older leaves cannot be reprogrammed by Rep alone but may need other uncharacterised viral and plant factors.


Plant Physiology | 2018

A Genetic Network for Systemic RNA Silencing in Plants

Weiwei Chen; Xian Zhang; Yaya Fan; Bin Li; Eugene V. Ryabov; Nongnong Shi; Mei Zhao; Zhiming Yu; Cheng Qin; Qianqian Zheng; Pengcheng Zhang; Huizhong Wang; Stephen D. Jackson; Qi Cheng; Yule Liu; Philippe Gallusci; Yiguo Hong

A DCL2-dependent DCL genetic pathway is crucial for systemic PTGS in plants. Non-cell autonomous RNA silencing can spread from cell to cell and over long distances in animals and plants. However, the genetic requirements and signals involved in plant mobile gene silencing are poorly understood. Here, we identified a DICER-LIKE2 (DCL2)-dependent mechanism for systemic spread of posttranscriptional RNA silencing, also known as posttranscriptional gene silencing (PTGS), in Nicotiana benthamiana. Using a suite of transgenic DCL RNAi lines coupled with a GFP reporter, we demonstrated that N. benthamiana DCL1, DCL2, DCL3, and DCL4 are required to produce microRNAs and 22, 24, and 21nt small interfering RNAs (siRNAs), respectively. All investigated siRNAs produced in local incipient cells were present at low levels in distal tissues. Inhibition of DCL2 expression reduced the spread of gene silencing, while suppression of DCL3 or DCL4 expression enhanced systemic PTGS. In contrast to DCL4 RNAi lines, DCL2-DCL4 double-RNAi lines developed systemic PTGS similar to that observed in DCL2 RNAi. We further showed that the 21 or 24 nt local siRNAs produced by DCL4 or DCL3 were not involved in long-distance gene silencing. Grafting experiments demonstrated that DCL2 was required in the scion to respond to the signal, but not in the rootstock to produce/send the signal. These results suggest a coordinated DCL genetic pathway in which DCL2 plays an essential role in systemic PTGS in N. benthamiana, while both DCL4 and DCL3 attenuate systemic PTGS. We discuss the potential role of 21, 22, and 24 nt siRNAs in systemic PTGS.


Science China-life Sciences | 2018

Comparative WGBS identifies genes that influence non-ripe phenotype in tomato epimutant Colourless non-ripening

Weiwei Chen; Zhiming Yu; Junhua Kong; Hui Wang; Yichen Li; Mei Zhao; Xiaohong Wang; Qianqian Zheng; Nongnong Shi; Pengcheng Zhang; Silin Zhong; Paul R. Hunter; Mahmut Tör; Yiguo Hong

Whole-genome bisulfite sequencing (WGBS) allows single-base resolution and genome-wide profiling of DNA methylation in plants and animals. This technology provides a powerful tool to identify genes that are potentially controlled by dynamic changes of DNA methylation and demethylation. However, naturally occurring epimutants are rare and genes under epigenetic regulation as well as their biological relevances are often difficult to define. In tomato, fruit development and ripening are a complex process that involves epigenetic control. We have taken the advantage of the tomato epimutant Colourless non-ripening (Cnr) and performed comparative mining of the WGBS datasets for the Cnr and SlCMT3-silenced Cnr fruits. We compared DNA methylation profiles for the promoter sequences of approximately 5,000 bp immediately upstream of the coding region of a list of 20 genes. Differentially methylated regions were found for some of these genes. Virus-induced gene silencing (VIGS) of differentially methylated gene SlDET1 or SlPDS resulted in unusual brown pigmentation in Cnr fruits. These results suggest that comparative WGBS coupled with VIGS can be used to identify genes that may contribute to the colourless unripe phenotype of fruit in the Cnr epimutant.


Journal of Integrative Plant Biology | 2018

Multigene Editing Via CRISPR/Cas9 Guided By a Single-sgRNA Seed in Arabidopsis

Zhiming Yu; Qiyuan Chen; Weiwei Chen; Xian Zhang; Fengling Mei; Pengcheng Zhang; Mei Zhao; Xiaohong Wang; Nongnong Shi; Stephen D. Jackson; Yiguo Hong

We report that a solo single-guide RNA (sgRNA) seed is capable of guiding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR -associated 9 (CRISRP/Cas9) to simultaneously edit multiple genes AtRPL10A, AtRPL10B and AtRPL10C in Arabidopsis. Our results also demonstrate that it is possible to use CRISPR/Cas9 technology to create AtRPL10 triple mutants which otherwise cannot be generated by conventional genetic crossing. Compared to other conventional multiplex CRISPR/Cas systems, a single sgRNA seed has the advantage of reducing off-target gene-editing. Such a gene editing system might be also applicable to modify other homologous genes, or even less-homologous sequences for multiple gene-editing in plants and other organisms.

Collaboration


Dive into the Nongnong Shi's collaboration.

Top Co-Authors

Avatar

Yiguo Hong

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Pengcheng Zhang

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Qin

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhiming Yu

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Li

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Tongfei Lai

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Weiwei Chen

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Huizhong Wang

Hangzhou Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge