Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nongnuj Tanphaichitr is active.

Publication


Featured researches published by Nongnuj Tanphaichitr.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2008

Human Exposure to Endocrine Disrupters and Semen Quality

Karen P. Phillips; Nongnuj Tanphaichitr

Reproductive pathology in the male represents about 20% of infertility cases. Male infertility may be attributed to a number of causes, including genetic and congenital abnormalities, infection, multisystemic diseases, varicocele, and others; however, a significant number of cases are idiopathic. Global declines in semen quality were suggested to be associated with enhanced exposure to environmental chemicals that act as endocrine disrupters as a result of our increased use of pesticides, plastics, and other anthropogenic materials. A significant body of toxicology data based upon laboratory and wildlife animals studies suggests that exposure to certain endocrine disrupters is associated with reproductive toxicity, including (1) abnormalities of the male reproductive tract (cryptorchidism, hypospadias), (2) reduced semen quality, and (3) impaired fertility in the adult. There is, however, a relative paucity of studies designed to measure exposure to endocrine disrupters on semen quality parameters (sperm concentration, motility, morphology). An overview of the human semen quality literature is presented that examines the role of endocrine disrupters including organochlorines (OC), dioxins, phthalates, phytoestrogens, and chemical mixtures (pesticides and tobacco smoke).


Journal of Cellular Physiology | 2009

Composition and significance of detergent resistant membranes in mouse spermatozoa

Brett Nixon; Amanda Bielanowicz; Eileen A. McLaughlin; Nongnuj Tanphaichitr; Michael A. Ensslin; R. John Aitken

Mammalian spermatozoa acquire the ability to fertilize an oocyte as they ascend the female reproductive tract. This process is characterized by a complex cascade of biophysical and biochemical changes collectively know as “capacitation.” The attainment of a capacitated state is accompanied by a dramatic reorganization of the surface architecture to render spermatozoa competent to recognize the oocyte and initiate fertilization. Emerging evidence indicates that this process is facilitated by molecular chaperone‐mediated assembly of a multimeric receptor complex on the sperm surface. However, the mechanisms responsible for gathering key recognition molecules within this putative complex have yet to be defined. In this study, we provide the first evidence that chaperones partition into detergent resistant membrane fractions (DRMs) within capacitated mouse spermatozoa and co‐localize in membrane microdomains enriched with the lipid raft marker, GM1 ganglioside. During capacitation, these microdomains coalesce within the apical region of the sperm head, a location compatible with a role in sperm–zona pellucida interaction. Significantly, DRMs isolated from spermatozoa possessed the ability to selectively bind to the zona pellucida of unfertilized, but not fertilized, mouse oocytes. A comprehensive proteomic analysis of the DRM fractions identified a total of 100 proteins, a number of which have previously been implicated in sperm–oocyte interaction. Collectively, these data provide compelling evidence that mouse spermatozoa possess membrane microdomains that provide a platform for the assembly of key recognition molecules on the sperm surface and thus present an important mechanistic insight into the fundamental cell biological process of sperm–oocyte interaction. J. Cell. Physiol. 218: 122–134, 2009.


Biology of Reproduction | 2002

Role of Sperm Surface Arylsulfatase A in Mouse Sperm-Zona Pellucida Binding

Julierut Tantibhedhyangkul; Wattana Weerachatyanukul; Euridice Carmona; Hongbin Xu; Araya Anupriwan; Dominick Michaud; Nongnuj Tanphaichitr

Abstract We have previously described the zonae pellucidae (ZP) binding ability of a pig sperm surface protein, P68. Our recent results on peptide sequencing of 3 P68 tryptic peptides and molecular cloning of pig testis arylsulfatase A (AS-A) revealed the identity of P68 as AS-A. In this report, we demonstrate the presence of AS-A on the mouse sperm surface and its role in ZP binding. Using anti-AS-A antibody, we have shown by immunoblotting that AS-A was present in a Triton X-100 extract of mouse sperm. The presence of AS-A on the sperm plasma membrane was conclusively demonstrated by indirect immunofluorescence, immunogold electron microscopy, and AS-As desulfation activity on live mouse sperm. The AS-A remained on the head surface of in vivo capacitated sperm, as revealed by positive immunofluorescent staining of oviductal/uterine sperm. Significantly, the role of mouse sperm surface AS-A on ZP binding was demonstrated by dose-dependent decreases of sperm-ZP binding on sperm pretreatment with anti-AS-A IgG/Fab. Furthermore, Alexa-430 conjugated AS-A bound to mouse ZP of unfertilized eggs but not to fertilized ones, and this level of binding increased and approached saturation with increasing Alexa-430 AS-A concentrations. Moreover, in vivo fertilization was markedly decreased when mouse sperm pretreated with anti-AS-A IgG were artificially inseminated into females. All of these results designated a new function for AS-A in mouse gamete interaction.


Biology of Reproduction | 2000

Role of Sperm Sulfogalactosylglycerolipid in Mouse Sperm-Zona Pellucida Binding

Dawn White; Wattana Weerachatyanukul; Bart M. Gadella; Nuanthip Kamolvarin; Mayssa Attar; Nongnuj Tanphaichitr

Abstract Sulfogalactosylglycerolipid (SGG) is the major sulfoglycolipid of mammalian male germ cells. Like other sulfoglycolipids, SGG is believed to be involved in cell-cell/extracellular matrix adhesion. Specifically, we investigated whether sperm SGG played a role in sperm-egg interaction. Initially, we produced an affinity-purified, rabbit polyclonal immunoglobulin (Ig) G antibody that specifically recognized SGG (anti-SGG). Indirect immunofluorescence using anti-SGG IgG localized SGG to the convex and concave ridges and the postacrosome of the mouse sperm head. Pretreatment of sperm with anti-SGG IgG/Fab inhibited sperm-zona pellucida (ZP) binding in vitro in a concentration-dependent manner (to a maximum of 62%). This inhibition was observed at the level of primary binding. Sperm treated with anti-SGG IgG underwent the spontaneous and ZP-induced acrosome reaction at the same rate as control sperm treated with preimmune rabbit serum IgG. Fluorescently labeled SGG liposomes were shown to associate specifically with the egg ZP, whereas fluorescently labeled liposomes of galactosylglycerolipid (SGGs parental lipid) and phosphatidylserine (negatively charged like SGG) did not. Furthermore, coincubation of SGG liposomes with sperm and isolated ZP inhibited sperm-ZP binding in a concentration-dependent manner. These results strongly suggest an involvement of sperm SGG in direct binding to the ZP.


Biology of Reproduction | 2006

Sperm from Mice Genetically Deficient for the PCSK4 Proteinase Exhibit Accelerated Capacitation, Precocious Acrosome Reaction, Reduced Binding to Egg Zona Pellucida, and Impaired Fertilizing Ability

Charles Gyamera-Acheampong; Julierut Tantibhedhyangkul; Wattana Weerachatyanukul; Haidy Tadros; Hongbin Xu; Jan-W. van de Loo; R.-Marc Pelletier; Nongnuj Tanphaichitr; Majambu Mbikay

Abstract The gene for proprotein convertase subtilisin/kexin-like 4 (PCSK4, previously known as PC4) is primarily transcribed in testicular spermatogenic cells. Its inactivation in mouse causes severe male subfertility. To better understand the reproductive function of PCSK4, we examined its subcellular localization in the testicular epithelium via immunohistochemistry, and on intact sperm via indirect immunofluorescence and immunoelectron microscopy. PCSK4 was detected in the acrosomal granules of round spermatids, in the acrosomal ridges of elongated spermatids, and on the sperm plasma membrane overlying the acrosome. We also investigated PCSK4 relevance for sperm acquisition of fertilizing ability by comparing wild-type and PCSK4-null sperm for their abilities in capacitation, acrosome reaction, and egg binding in vitro. PCSK4-null sperm underwent capacitation at a faster rate; they were induced to acrosome react by lower concentrations of zona pellucida; and their egg-binding ability was only half that of wild-type sperm. These sperm physiologic anomalies likely contribute to the severe subfertility of PCSK4-deficient male mice.


Biology of Reproduction | 2003

Acquisition of Arylsulfatase A onto the Mouse Sperm Surface During Epididymal Transit

Wattana Weerachatyanukul; Hongbin Xu; Araya Anupriwan; Euridice Carmona; Michael G. Wade; Louis Hermo; Solange Maria da Silva; Peter Rippstein; Prasert Sobhon; Prapee Sretarugsa; Nongnuj Tanphaichitr

Abstract Arylsulfatase A (AS-A) is localized to the sperm surface and participates in sperm-zona pellucida binding. We investigated how AS-A, usually known as an acrosomal enzyme, trafficked to the sperm surface. Immunocytochemistry of the mouse testis confirmed the existence of AS-A in the acrosomal region of round and elongating spermatids. However, immunofluorescence and flow cytometry indicated the absence of AS-A on the surface of live testicular sperm. In contrast, positive AS-A staining was observed in the heads of live caudal epididymal and vas deferens sperm. The results suggested that acquisition of AS-A on the sperm surface occurred during epididymal transit. Immunocytochemistry of the epididymis revealed AS-A in narrow and apical cells in the initial segment and in clear cells in all epididymal regions. However, these epithelial cells are in the minority and are not involved in secretory activity. In the caudal epididymis and vas deferens, AS-A was also localized to principal cells, the major epithelial cells. Because principal cells have secretory activity, they may secrete AS-A into the epididymal fluid. This hypothesis was supported by our results revealing the presence of AS-A in the epididymal and vas deferens fluid (determined by immunoblotting and ELISA) and an AS-A transcript in the epididymis (by reverse transcription polymerase chain reaction). Alexa-430 AS-A bound to epididymal sperm with high affinity (Kd = 46 nM). This binding was inhibited by treatment of sperm with an antibody against sperm surface sulfogalactosylglycerolipid. This finding suggests that AS-A in the epididymal fluid may deposit onto sperm via its affinity to sulfogalactosylglycerolipid.


Biology of Reproduction | 2005

Percoll Gradient-Centrifuged Capacitated Mouse Sperm Have Increased Fertilizing Ability and Higher Contents of Sulfogalactosylglycerolipid and Docosahexaenoic Acid-Containing Phosphatidylcholine Compared to Washed Capacitated Mouse Sperm

Anna Furimsky; Ngoc Q. Vuong; Hongbin Xu; Premkumari Kumarathasan; Min Xu; Wattana Weerachatyanukul; Maroun Bou Khalil; M. Kates; Nongnuj Tanphaichitr

Abstract Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.


Drug Metabolism and Disposition | 2003

Identification of trichloroethylene and its metabolites in human seminal fluid of workers exposed to trichloroethylene.

Poh Gek Forkert; Lawrence H. Lash; Robert Tardif; Nongnuj Tanphaichitr; Catherine A. VandeVoort; Madeleine Moussa

We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.


Biology of Reproduction | 2002

Binding of Arylsulfatase A to Mouse Sperm Inhibits Gamete Interaction and Induces the Acrosome Reaction

Euridice Carmona; Wattana Weerachatyanukul; Hongbin Xu; Arvan L. Fluharty; Araya Anupriwan; Ali Shoushtarian; Krittalak Chakrabandhu; Nongnuj Tanphaichitr

Abstract We have shown previously that male germ cell-specific sulfoglycolipid, sulfogalactosylglycerolipid (SGG), is involved in sperm-zona pellucida binding, and that SGG and its desulfating enzyme, arylsulfatase A (AS-A), coexist in the same sperm head area. However, AS-A exists at a markedly low level in sperm as compared to SGG (i.e., 1/400 of SGG molar concentration). In the present study, we investigated whether perturbation of this molar ratio would interfere with sperm-egg interaction. We demonstrated that purified AS-A bound to the mouse sperm surface through its high affinity with SGG. When capacitated, Percoll gradient-centrifuged mouse sperm were treated for 1 h with various concentrations of AS-A, their binding to zona-intact eggs was inhibited in a dose-dependent manner and reached the background level with 63 nM AS-A. This inhibition could be partially explained by an increase in premature acrosome reaction. The acrosome-reacted sperm population of the 63 nM AS-A-treated sperm sample was twice that of the control sample (treated with 63 nM ovalbumin) at 1 h (i.e., 32% vs. 15%) and rose to 53% at 2 h. This induction was presumably due to SGG aggregation attributed to AS-A, existing as a dimer at neutral pH, and could be mimicked by anti-SGG immunoglobulin (Ig) G/IgM + secondary IgG antibody. Drastic inhibition (75%) of in vivo fertilization was also observed in females inseminated with sperm suspension containing 630 nM AS-A as compared to the rate in females inseminated with sperm suspension included with 630 nM ovalbumin. Our results demonstrate a promising potential for AS-A as a nonhormonal, vaginal contraceptive.


Expert Review of Endocrinology & Metabolism | 2010

Mechanisms of obesity-induced male infertility

Karen P. Phillips; Nongnuj Tanphaichitr

Male infertility, characterized by hypogonadism, decreased semen quality or ejaculatory dysfunction, accounts for approximately 20% of infertility cases. Obesity and metabolic dysfunction have been identified, among other causal factors, to contribute to male infertility. In the context of the Western world’s ‘obesity epidemic’, this article discusses three main biological mechanisms linking obesity to impaired male reproductive function: hypogonadism, testicular heat stress/hypoxia-induced apoptosis and endocrine disruption by ‘obesogens’. Among these, obesity-induced hypogonadism is undoubtedly the most clinically significant and is easily assessed. Rapidly expanding areas of research in this area include leptin modulation of kisspeptins and hypothalamic–pituitary–testicular hormone pathways, and roles of other adipocytokines in male infertility, as well as the impact of exposure to obesogens on the quality of semen.

Collaboration


Dive into the Nongnuj Tanphaichitr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kym F. Faull

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Araya Anupriwan

Mahanakorn University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nopparat Srakaew

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Fitzgerald

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge