Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noori M. Cata Saady is active.

Publication


Featured researches published by Noori M. Cata Saady.


Open Access Journal | 2014

Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

Daniel I. Massé; Noori M. Cata Saady; Yan Gilbert

Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion.


Bioresource Technology | 2013

Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study

Noori M. Cata Saady; Daniel I. Massé

Psychrophilic (20°C) specific methane (CH4) yield from cellulose (C), xylan (X), cellulose/xylan mixture (CX), cow feces (CF), and wheat straw (WS) achieved (Nl CH4 kg(-1)VS) of 338.5 ± 14.3 (C), 310.5 ± 3.4 (X), 305.5 ± 29.6 (CX mixture), and 235.3 ± 22.7 (WS) during 56 days, and 237.6 ± 17.7 (CF) during 70 days. These yields corresponded to COD recovery of 73.3 ± 3.1% (C)=69.1 ± 0.76% (X)=67.3 ± 5.8% (CX mixture)>52.9 ± 2.6% (CF)>46.5 ± 2.7% (WS). Cellulose-fed culture had a lower and statistically different initial CH4 production rate from those calculated for cultures fed X, CX mixture, CF and WS. It seemed that the presence of hemicellulose in complex substrate such as wheat straw and cow feces supported the higher initial CH4 rate compared to cellulose. Biomethanation of the pure and complex lignocellulosic substrates tested is feasible at psychrophilic conditions given that a well-adapted inoculum is used; however, hydrolysis was the rate limiting step.


Waste Management | 2015

Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

Daniel I. Massé; Noori M. Cata Saady

This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13-16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 (N)L CH4 kg(-1) of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg(-1) inoculum d(-1) and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4(N)L CH4 kg(-1) VS fed d(-1) has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.


Bioresource Technology | 2015

Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: Long-term operation

Noori M. Cata Saady; Daniel I. Massé

Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction.


Environmental Technology | 2013

Low-temperature anaerobic digestion of swine manure in a plug-flow reactor

Daniel I. Massé; Yan Gilbert; Noori M. Cata Saady; Charle Liu

A low-temperature (25°C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4±0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67±7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg−1 VS (148.6 to 171.4 NL CH4 kg−1 TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.


Bioresource Technology | 2015

High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

Noori M. Cata Saady; Daniel I. Massé

Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length.


Bioresource Technology | 2015

High rate psychrophilic anaerobic digestion of undiluted dairy cow feces.

Daniel I. Massé; Noori M. Cata Saady

Novel high rate psychrophilic (20°C) anaerobic digestion (PAD) of undiluted cow feces (11.5-13.5% total solids) was demonstrated using sequence batch reactor in long-term operation with successive cycles of 21days treatment cycle length (TCL). At organic loading rates (OLR) 9.0, 10.0, 11.0 and 12.0g TCOD kg(-1) inoculum d(-1) average specific methane yield (SMY) was 154.0±11.7, 152.1±12.2, 126.0±2.8 and 116.0±6.1NL CH4 per kg of VS fed, respectively. Volatile solids removal averaged around 31.7±3.3%, 32.2±1.0%, 27.9±2.2% and 23.4±0.5%, respectively. Substrate-to-inoculum ratio (SIR; wet-mass basis) ranged between 1.17±0.06 and 1.43±0.05. Concentration of volatile fatty acids in the bioreactors during the TCL indicated that hydrolysis was the rate limiting reaction. High rate PAD of undiluted cow feces is possible at OLR (g TCOD kg(-1) inoculum d(-1)) 9.0 and 10.0 with a TCL of 21days; however, OLR of 11.0 and 12.0 are also possible but require longer TCL to maintain the SMY.


Animal | 2014

Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

Daniel I. Massé; Guillaume Jarret; Chaouki Benchaar; Noori M. Cata Saady

Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet.


International Journal of Environment and Waste Management | 2015

Energy recovery through biohydrogen production for sustainable anaerobic waste treatment: an overview

Noori M. Cata Saady; Yung Tse Hung

The paper is a comprehensive review of the literature for the last five years to provide the current status of H2 production through anaerobic digestion of industrial waste. Hydrogen production through dark fermentation is still far from industrial application. More research is needed to overcome the metabolic limitation and increase H2 yield, rate, and substrate-to-H2 conversion efficiency in a stable process. Generally, studies on effects of culture pretreatment are contradictory and lacked energy and cost analysis in their evaluation. More studies are expected to appear on two-stage and integrative systems of various H2 and other biofuels or value-added chemicals bioprocesses. Metabolic modelling, metabolic engineering, and molecular biology aspects of the microbial community are the current research areas for H2 production through dark fermentation and a coordinative research agenda is required to integrate them into a goal-directed plan. Investment and funding of research are the major drives needed to achieve a milestone.


International Journal of Hydrogen Energy | 2013

Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge

Noori M. Cata Saady

Collaboration


Dive into the Noori M. Cata Saady's collaboration.

Top Co-Authors

Avatar

Daniel I. Massé

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Yan Gilbert

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Chaouki Benchaar

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Guillaume Jarret

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

F. Hassanat

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Rajinikanth Rajagopal

Indian Institute of Technology Roorkee

View shared research outputs
Top Co-Authors

Avatar

Charle Liu

University of St Andrews

View shared research outputs
Researchain Logo
Decentralizing Knowledge