Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noppon Lertwattanasakul is active.

Publication


Featured researches published by Noppon Lertwattanasakul.


Applied Microbiology and Biotechnology | 2011

Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus

Nadchanok Rodrussamee; Noppon Lertwattanasakul; Katsushi Hirata; Suprayogi; Savitree Limtong; Tomoyuki Kosaka; Mamoru Yamada

Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.


Biotechnology for Biofuels | 2015

Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses.

Noppon Lertwattanasakul; Tomoyuki Kosaka; Akira Hosoyama; Yutaka Suzuki; Nadchanok Rodrussamee; Minenosuke Matsutani; Masayuki Murata; Naoko Fujimoto; Suprayogi; Keiko Tsuchikane; Savitree Limtong; Nobuyuki Fujita; Mamoru Yamada

BackgroundHigh-temperature fermentation technology with thermotolerant microbes has been expected to reduce the cost of bioconversion of cellulosic biomass to fuels or chemicals. Thermotolerant Kluyveromyces marxianus possesses intrinsic abilities to ferment and assimilate a wide variety of substrates including xylose and to efficiently produce proteins. These capabilities have been found to exceed those of the traditional ethanol producer Saccharomyces cerevisiae or lignocellulose-bioconvertible ethanologenic Scheffersomyces stipitis.ResultsThe complete genome sequence of K. marxianus DMKU 3-1042 as one of the most thermotolerant strains in the same species has been determined. A comparison of its genomic information with those of other yeasts and transcriptome analysis revealed that the yeast bears beneficial properties of temperature resistance, wide-range bioconversion ability, and production of recombinant proteins. The transcriptome analysis clarified distinctive metabolic pathways under three different growth conditions, static culture, high temperature, and xylose medium, in comparison to the control condition of glucose medium under a shaking condition at 30°C. Interestingly, the yeast appears to overcome the issue of reactive oxygen species, which tend to accumulate under all three conditions.ConclusionsThis study reveals many gene resources for the ability to assimilate various sugars in addition to species-specific genes in K. marxianus, and the molecular basis of its attractive traits for industrial applications including high-temperature fermentation. Especially, the thermotolerance trait may be achieved by an integrated mechanism consisting of various strategies. Gene resources and transcriptome data of the yeast are particularly useful for fundamental and applied researches for innovative applications.


AMB Express | 2011

Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042

Noppon Lertwattanasakul; Nadchanok Rodrussamee; Suprayogi; Savitree Limtong; Pornthap Thanonkeo; Tomoyuki Kosaka; Mamoru Yamada

Kluyveromyces marxianus possesses a useful potential to assimilate a wide variety of substrates at a high temperature, but the negative effect by coexisting glucose is critical for utilization of biomass containing various sugars. Such a negative effect on the activity of inulinase, which is the sole enzyme to hydrolyze sucrose, raffinose and inulin, has been demonstrated in K. marxianus without analysis at the gene level. To clarify the utilization capability of sucrose, raffinose and inulin and the glucose effect on inulinase in K. marxianus DMKU 3-1042, its growth and metabolite profiles on these sugars were examined with or without glucose under a static condition, in which glucose repression evidently occurs. Consumption of sucrose was not influenced by glucose or 2-deoxyglucose. On the other hand, raffinose and inulin consumption was hampered by glucose at 30°C but hardly hampered at 45°C. Unlike Saccharomyces cerevisiae, increase in glucose concentration had no effect on sucrose utilization. These sugar-specific glucose effects were consistent with the level of inulinase activity but not with that of the KmINU1 transcript, which was repressed in the presence of glucose via KmMig1p. This inconsistency may be due to sufficient activity of inulinase even when glucose is present. Our results encourage us to apply K. marxianus DMKU 3-1042 to high-temperature ethanol fermentation with biomass containing these sugars with glucose.


Journal of Molecular Microbiology and Biotechnology | 2008

Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles.

Kaewta Sootsuwan; Noppon Lertwattanasakul; Pornthap Thanonkeo; Kazunobu Matsushita; Mamoru Yamada

The respiratory chain of the ethanologenic bacterium Zymomonas mobilis was investigated, in which the pyruvate-to-ethanol pathway has been demonstrated to be mainly responsible for NADH oxidation and the tricarboxylic acid cycle is incomplete. Membranes from cells cultivated under aerobic or anaerobic growth conditions showed dehydrogenase and oxidase activities for NADH, D-lactate and D-glucose and ubiquinol oxidase activity. Intriguingly, the NADH oxidase activity level of membrane fractions from cells grown aerobically was found to be higher than that of membrane fractions from Escherichia coli or Pseudomonas putida grown aerobically, indicating a crucial role of the respiratory chain in NADH oxidation in the organism. Cyanide-resistant terminal oxidase activity was observed and appeared to be due to a bd-type ubiquinol oxidase as the only terminal oxidase encoded by the entire genome. The terminal oxidase with a relatively strong ubiquinol oxidase activity exhibited remarkably weak signals of cytochrome d. Considering these findings and the presence of a type-II NADH dehydrogenase but not a type-I, a simple respiratory chain that generates less energymay have evolved in Z. mobilis.


Bioscience, Biotechnology, and Biochemistry | 2007

Comparison of the Gene Expression Patterns of Alcohol Dehydrogenase Isozymes in the Thermotolerant Yeast Kluyveromyces marxianus and Their Physiological Functions

Noppon Lertwattanasakul; Kaewta Sootsuwan; Savitree Limtong; Pornthap Thanonkeo; Mamoru Yamada

Four genes encoding alcohol dehydrogenase (Adh) isozymes in the thermotolerant yeast Kluyveromyces marxianus, a potent candidate for ethanol production at high temperatures, were investigated. Of these, KmADH3 and KmADH4 were cloned and sequenced, and their deduced amino acid sequences were compared with those of KmAdh1 and KmAdh2 and other Adhs of Kluyveromyces lactis and Saccharomyces cerevisiae. The four KmAdhs had high sequence similarity, though KmAdh3 and KmAdh4 possessed an amino-terminal extension as a mitochondrial targeting sequence, and appear to belong to the zinc-containing Adh family. These results and the results of Southern blot experiments suggest that there are at least four Adh isozymes in K. marxianus, two cytoplasmic enzymes and two mitochondrial enzymes. The expression profile revealed that KmADH genes are differently expressed depending on growth phase and carbon source, suggesting that these highly homologous Adhs play distinctive roles in cells.


Fungal Biology | 2015

Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol

Pirapan Polburee; Wichien Yongmanitchai; Noppon Lertwattanasakul; Takao Ohashi; Kazuhito Fujiyama; Savitree Limtong

This study attempted to identify oleaginous yeasts and selected the strain that accumulated the largest quantity of lipid for lipid production from glycerol. Two-step screening of 387 yeast strains revealed 23 oleaginous strains that accumulated quantities of lipid higher than 20 % of their biomass when cultivated in glycerol. These strains were identified to be four ascomycetous yeast species i.e. Candida silvae, Kodamaea ohmeri, Meyerozyma caribbica, and Pichia manshurica, and five basidiomycetous yeast species i.e. Cryptococcus cf. podzolicus, Cryptococcus laurentii, Rhodosporidium fluviale, Rhodotorula taiwanensis, and Sporidiobolus ruineniae. Rhodosporidium fluviale DMKU-RK253 accumulated the highest quantity of lipid equal to 65.2 % of its biomass (3.9 g L(-1) lipid and 6.0 g L(-1) biomass) by shaking flask cultivation in crude glycerol. The main fatty acids in the accumulated lipid of this strain consisted of oleic acid, linoleic acid, and palmitic acid. Therefore, R. fluviale DMKU-RK253 has potential for producing lipid for biodiesel manufacturing using crude glycerol as a feedstock.


Journal of Molecular Microbiology and Biotechnology | 2011

Physiological Importance of Cytochrome c Peroxidase in Ethanologenic Thermotolerant Zymomonas mobilis

Kannikar Charoensuk; Akira Irie; Noppon Lertwattanasakul; Kaewta Sootsuwan; Pornthap Thanonkeo; Mamoru Yamada

Zymomonas mobilis ZmCytC as a peroxidase bearing three heme c-binding motifs was investigated with ΔZmcytC constructed. The mutant exhibited filamentous shapes and reduction in growth under a shaking condition at a high temperature compared to the parental strain and became hypersensitive to exogenous H2O2. Under the same condition, the mutation caused increased expression of genes for three other antioxidant enzymes. Peroxidase activity, which was detected in membrane fractions with ubiquinol-1 as a substrate but not with reduced horse heart cytochrome c, was almost abolished in ΔZmcytC. Peroxidase activity was also detected with NADH as a substrate, which was significantly inhibited by antimycin A. NADH oxidase activity of ΔZmcytC was found to be about 80% of that of the parental strain. The results suggest the involvement of ZmCytC in the aerobic respiratory chain via the cytochrome bc1 complex in addition to the previously proposed direct interaction with ubiquinol and its contribution to protection against oxidative stress.


Bioscience, Biotechnology, and Biochemistry | 2009

The Crucial Role of Alcohol Dehydrogenase Adh3 in Kluyveromyces marxianus Mitochondrial Metabolism

Noppon Lertwattanasakul; Emi Shigemoto; Nadchanok Rodrussamee; Savitree Limtong; Pornthap Thanonkeo; Mamoru Yamada

The function of mitochondrial Adh3 in the thermotolerant yeast Kluyveromyces marxianus was investigated. An ADH3-disrupted mutant exhibited growth retardation on non-fermentable carbon sources, except for ethanol, and this was suppressed by supplementation with antioxidants. Detailed analysis of the phenotype revealed that the mutant showed an increase in the activity of NADH dehydrogenase, sensitivity to H2O2, and accumulation of reactive oxygen species (ROS), and that these carbon sources increased the activity of succinate dehydrogenase. The increase in both activities may reflect enhanced expression of both dehydrogenases by elevation of their substrate levels. The ROS level became low when antioxidants were added. These findings suggest that the ADH3 mutation and such carbon sources cause an elevation of the substrate level of the respiratory chain and eventually of the ROS level via increased expression of primary dehydrogenases, which in turn causes cell growth retardation. Adh3 might thus play a crucial role in the control of the NADH/NAD+ balance in mitochondria.


The Open Biotechnology Journal | 2007

Thermotolerant Zymomonas mobilis: Comparison of Ethanol Fermentation Capability with that of an Efficient Type Strain

Kaewta Sootsuwan; Akira Irie; Masayuki Murata; Noppon Lertwattanasakul; Pornthap Thanonkeo; Mamoru Yamada

Zymomonas mobilis is an alternative microorganism to Saccharomyces cerevisiae for ethanol production. To find a thermotolerant Z. mobilis strain, the growth and ethanol production of four isolates in Thailand were compared with those of the efficient strain ZM4 (NRRL B-14023) at different temperatures. One of the selected strains, TISTR 405, was found to grow and produce ethanol even at 39˚C to an extent similar to that at 30˚C, and the growth and ethanol produc- tivity at 39˚C were better than those of ZM4 at 30˚C, suggesting that TISTR 405 is suitable for ethanol fermentation at high temperatures. Analysis of genes directly related to ethanol formation or degradation, adhA, adhB and pdc, encoding alcohol dehydrogenase (Adh) A, AdhB and pyruvate decarboxylase, respectively, revealed that these genes were highly conserved in both strains. Comparison of their gene expression and activity of the products in both TISTR 405 and ZM4 at different temperatures or growth phases indicated that there was not a great difference at the transcriptional level, but the total activity of AdhA and AdhB in TISTR 405 was higher than that in ZM4. Both strains showed a significant in- crease in AdhB activity in the stationary phase.


International Journal of Systematic and Evolutionary Microbiology | 2015

Description of Diutina gen. nov., Diutina siamensis, f.a. sp. nov., and reassignment of Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida ranongensis, Candida rugosa and Candida scorzettiae to the genus Diutina.

Pannida Khunnamwong; Noppon Lertwattanasakul; Sasitorn Jindamorakot; Savitree Limtong; Marc-André Lachance

Three strains (DMKU-RE28, DMKU-RE43T and DMKU-RE123) of a novel anamorphic yeast species were isolated from rice leaf tissue collected in Thailand. DNA sequence analysis demonstrated that the species forms a sister pair with Candida ranongensis CBS 10861T but differs by 24-30 substitutions in the LSU rRNA gene D1/D2 domains and 30-35 substitutions in the ITS region. A phylogenetic analysis based on both the small and the large rRNA gene subunits confirmed this connection and demonstrated the presence of a clade that also includes Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida rugosa and Candida scorzettiae. The clade is not closely affiliated to any known teleomorphic genus, and forms a well-separated lineage from currently recognized genera of the Saccharomycetales. Hence, the genus Diutina gen. nov. is proposed to accommodate members of the clade, including Diutina siamensis f.a. sp. nov. and the preceding seven Candida species. The type strain is DMKU-RE43T ( = CBS 13388T = BCC 61183T = NBRC 109695T).

Collaboration


Dive into the Noppon Lertwattanasakul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge