Nora M. O'Brien
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nora M. O'Brien.
International Journal of Food Sciences and Nutrition | 2004
L. S. Maguire; S. M. O'Sullivan; K. Galvin; Thomas P. O'Connor; Nora M. O'Brien
Nuts are high in fat but have a fatty acid profile that may be beneficial in relation to risk of coronary heart disease. Nuts also contain other potentially cardioprotective constituents including phytosterols, tocopherols and squalene. In the present study, the total oil content, peroxide value, composition of fatty acids, tocopherols, phytosterols and squalene content were determined in the oil extracted from freshly ground walnuts, almonds, peanuts, hazelnuts and the macadamia nut. The total oil content of the nuts ranged from 37.9 to 59.2%, while the peroxide values ranged from 0.19 to 0.43 meq O2/kg oil. The main monounsaturated fatty acid was oleic acid (C18:1) with substantial levels of palmitoleic acid (C16:1) present in the macadamia nut. The main polyunsaturated fatty acids present were linoleic acid (C18:2) and linolenic acid (C18:3). α-Tocopherol was the most prevalent tocopherol except in walnuts. The levels of squalene detected ranged from 9.4 to 186.4 μg/g. β-Sitosterol was the most abundant sterol, ranging in concentration from 991.2 to 2071.7 μg/g oil. Campesterol and stigmasterol were also present in significant concentrations. Our data indicate that all five nuts are a good source of monounsaturated fatty acid, tocopherols, squalene and phytosterols.
Advances in food and nutrition research | 1996
Patrick F. Fox; Thomas P. O'Connor; P.L.H. McSweeney; Timothy P. Guinee; Nora M. O'Brien
Publisher Summary This chapter discusses the physical, biochemical, and nutritional aspects of cheese. Cheese is the most diverse, most scientifically interesting, and most challenging group of dairy products. While most dairy products, if properly manufactured and stored, are biologically, biochemically, and chemically very stable, cheeses are biologically and biochemically dynamic and, consequently, inherently unstable. Cheese manufacture and ripening involves a complex series of consecutive and concomitant microbiological, biochemical, and chemical events, which, if synchronized and balanced, lead to products with highly desirable flavors, but when unbalanced, result in off-flavors. Considering that a basically similar raw material (milks from a very limited number of species) is subjected to a generally common manufacturing protocol, it is fascinating that such a diverse range of products can be produced.
International Journal of Food Sciences and Nutrition | 2006
Eileen Ryan; K. Galvin; Thomas P. O'Connor; Anita R. Maguire; Nora M. O'Brien
Nuts contain bioactive constituents that elicit cardio-protective effects including phytosterols, tocopherols and squalene. The objective of the present study was to determine the total oil content, peroxide value, fatty acid composition and levels of tocopherols, squalene and phytosterols in oil extracted from freshly ground brazil, pecan, pine, pistachio and cashew nuts. The total oil content of the nuts ranged from 40.4 to 60.8% (w/w) while the peroxide values ranged from 0.14 to 0.22 mEq O2/kg oil. The most abundant monounsaturated fatty acid was oleic acid (C18:1), while linoleic acid (C18:2) was the most prevalent polyunsaturated fatty acid. The levels of total tocopherols ranged from 60.8 to 291.0 mg/g. Squalene ranged from 39.5 mg/g oil in the pine nut to 1377.8 mg/g oil in the brazil nut. β-Sitosterol was the most prevalent phytosterol, ranging in concentration from 1325.4 to 4685.9 mg/g oil. In conclusion, the present data indicate that nuts are a good dietary source of unsaturated fatty acids, tocopherols, squalene and phytosterols.
FEBS Letters | 2001
Karen A O'Leary; Andrea J. Day; Paul W. Needs; William S. Sly; Nora M. O'Brien; Gary Williamson
Quercetin glucuronides are the main circulating metabolites of quercetin in humans. We hypothesise that the potential availability of the aglycone within tissues depends on the substrate specificity of the deconjugating enzyme β‐glucuronidase towards circulating flavonoid glucuronides. Human tissues (small intestine, liver and neutrophils) exhibited β‐glucuronidase against quercetin glucuronides. The various quercetin glucuronides were deconjugated at similar rates, but liver cell‐free extracts were the most efficient and the activity was completely inhibited by saccharo‐1,4‐lactone (a β‐glucuronidase inhibitor). Furthermore, pure recombinant human β‐glucuronidase hydrolysed various flavonoid glucuronides, with a 20‐fold variation in catalytic efficiency (k cat/K m=1.3×103 M−1 s−1 for equol‐7‐O‐glucuronide and 26×103 M−1 s−1 for kaempferol‐3‐O‐glucuronide). Similar catalytic efficiencies were obtained for quercetin O‐glucuronides substituted at different positions. These results show that flavonoid glucuronides can be deconjugated by microsomal β‐glucuronidase from various human cells.
Free Radical Biology and Medicine | 2000
S. A. Aherne; Nora M. O'Brien
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.
Nutrition and Cancer | 1999
S. A. Aherne; Nora M. O'Brien
Flavonoids are reported to exhibit a wide variety of biological effects, including antioxidant and free radical-scavenging activities. Reactive oxygen species have been implicated in a range of human pathological diseases such as atherosclerosis and certain cancers. The aims of this present study were 1) to investigate the effect of the flavonoids myricetin, quercetin, and rutin on cell viability, endogenous antioxidant enzyme activities, and DNA integrity in Caco-2 and Hep G2 cells and 2) to determine whether these flavonoids could protect against H2O2-induced DNA damage. Both cell lines were supplemented with various concentrations (0-200 microM) of myricetin, quercetin, and rutin for 24 hours or H2O2 (50 microM) for 30 minutes, and cell viability was assessed. Over the concentration range tested, neither the flavonoids nor H2O2 significantly affected cell viability. The effect of the flavonoids on the activities of the antioxidant enzymes catalase (EC 1.11.1.6) and superoxide dismutase (EC 1.15.1.1) and on DNA integrity was assessed. The flavonoids did not significantly affect catalase or superoxide dismutase activity and did not induce DNA damage in either cell line. Exposure to 50 microM H2O2 for 30 minutes at 37 degrees C resulted in significant DNA damage, and preincubation with the flavonoids before H2O2 exposure significantly (p < 0.05) protected Caco-2 and Hep G2 cells against H2O2-induced DNA damage.
Journal of Nutritional Biochemistry | 2009
Sinéad Lordan; John J. Mackrill; Nora M. O'Brien
Oxysterols, or cholesterol oxidation products, are oxygenated derivatives of cholesterol which are formed endogenously during the biosynthesis of bile acids and steroid hormones. In addition, oxysterols may also be absorbed from the diet as they are found in many commonly consumed foods. Oxysterols have been shown to possess many potent and diverse biological activities, and the study of the effects of these oxidation products on the human body forms a wide field of research. The results of most research efforts support the conclusion that certain oxysterols, predominantly those found in oxidized low-density lipoprotein, exert pathological effects such as the induction of apoptotic cell death. Moreover, apoptosis induced by oxysterols has been strongly implicated in the pathogenesis of atherosclerosis as well as a variety of other diseases. The study of oxysterol-induced apoptosis is an emerging area, and the following review aims to provide a detailed account on the chronology of events involved. Current evidence of the involvement of the death receptor pathway and protein kinases is examined as well as important apoptosis regulators such as the mitochondria, B-cell lymphoma-2 proteins and caspases. The effect of oxysterols on gene expression, protein interactions and membrane properties are also discussed.
British Journal of Nutrition | 1999
Christopher Jewell; Nora M. O'Brien
The effect of 16 d intake of 300 mg carotenoids/kg diet (beta-carotene (beta C), bixin (BX), lycopene (LY), lutein (LU), canthaxanthin (CX) or astaxanthin (AX) on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of male Wistar rats was assessed. A control group received the basal diet (AIN-76) without carotenoids and a positive control group for enzyme induction received 3-methylcholanthrene (3-MC) at 666 mg/kg diet. Cytochrome P450 activity was assessed using the substrates ethoxyresorufin for P450 1A1, methoxyresorufin for P450 1A2, pentoxyresorufin for P450 2B1/2 and benzyloxyresorufin for P450 types 1A1/2, 2B1/2 and 3A. Glutathione-S-transferase (EC 2.5.1.18) and reduced glutathione status were assessed. Carotenoid uptake by the tissues was also determined. 3-MC and the carotenoids BX, CX and AX led to significant increases compared with control in liver, lung and kidney ethoxyresorufin-O-deethylation. Methoxyresorufin-O-demethylation activity was significantly increased in liver and lung by BX, CX and AX but only CX and AX significantly increased activity in kidney. Pentoxyresorufin-O-depentylation and benzyloxyresorufin-O-dearylation increased in liver of 3-MC-, BX-, CX- and AX-treated rats, but to a much lesser degree than for the other two substrates. Benzyloxyresorufin-O-dearylation in lung was significantly decreased by all carotenoids. Activities of any of the measured enzymes in the small intestine were undetectable in all treatment groups except the 3-MC group. Glutathione status was unaffected by any of the treatments. This is the first study identifying the carotenoids BX, CX and AX as inducers of rat lung and kidney xenobiotic metabolizing enzymes.
British Journal of Nutrition | 2005
Eileen Ryan; Jay Chopra; Florence O. McCarthy; Anita R. Maguire; Nora M. O'Brien
Phytosterols contain an unsaturated ring structure and therefore are susceptible to oxidation under certain conditions. Whilst the cytotoxicity of the analogous cholesterol oxidation products (COP) has been well documented, the biological effects of phytosterol oxidation products (POP) have not yet been fully ascertained. The objective of the present study was to examine the cytotoxicity of beta-sitosterol oxides and their corresponding COP in a human monocytic cell line (U937), a colonic adenocarcinoma cell line (CaCo-2) and a hepatoma liver cell line (HepG2). 7beta-Hydroxysitosterol, 7-ketositosterol, sitosterol-3beta,5alpha,6beta-triol and a sitosterol-5alpha,6alpha-epoxide-sitosterol-5beta,6beta-epoxide (6:1) mixture were found to be cytotoxic to all three cell lines employed; the mode of cell death was by apoptosis in the U937 cell line and necrosis in the CaCo-2 and HepG2 cells. 7beta-Hydroxysitosterol was the only beta-sitosterol oxide to cause depletion in glutathione, indicating that POP-induced apoptosis may not be dependent on the generation of an oxidative stress. A further objective of this study was to assess the ability of the antioxidants alpha-tocopherol, gamma-tocopherol and beta-carotene to modulate POP-induced cytotoxicity in U937 cells. Whilst alpha/gamma-tocopherol protected against 7beta-hydroxycholesterol-induced apoptosis, they did not confer protection against 7beta-hydroxysitosterol- or 7-ketositosterol-induced toxicity, indicating that perhaps COP provoke different apoptotic pathways than POP. beta-Carotene did not protect against COP- or POP-induced toxicity. In general, results indicate that POP have qualitatively similar toxic effects to COP. However, higher concentrations of POP are required to elicit comparable levels of toxicity.
Journal of Dermatological Science | 1998
Irene O'Connor; Nora M. O'Brien
The ability of beta-carotene, lutein or astaxanthin to protect against UVA-induced oxidative stress in rat kidney fibroblasts (NRK) was assessed. Activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), and changes in thiobarbituric acid reactive substances (TBARS) were measured as indices of oxidative stress. Exposure to UVA light at a dose intensity of 5.6 mW/cm2 for 4 h resulted in a significant decrease in CAT and SOD activities and a significant increase in TBARS. No cytotoxicity, as indicated by lactate dehydrogenase (LDH) release, was observed. beta-Carotene (1 microM), lutein (1 microM) and astaxanthin (10 nM) protect against UVA light-induced oxidative stress in vitro with astaxanthin exhibiting superior protective properties.