Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nora Pöntynen is active.

Publication


Featured researches published by Nora Pöntynen.


The New England Journal of Medicine | 2008

Autoimmune Polyendocrine Syndrome Type 1 and NALP5, a Parathyroid Autoantigen

Mohammad Alimohammadi; Peyman Björklund; Åsa Hallgren; Nora Pöntynen; Gabor Szinnai; Noriko Shikama; Marcel P. Keller; Olov Ekwall; Sarah Kinkel; Eystein S. Husebye; Jan Gustafsson; Fredrik Rorsman; Leena Peltonen; Corrado Betterle; Jaakko Perheentupa; Göran Åkerström; Gunnar Westin; Hamish S. Scott; Georg A. Holländer; Olle Kämpe

BACKGROUND Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disorder caused by mutations in AIRE, the autoimmune regulator gene. Though recent studies concerning AIRE deficiency have begun to elucidate the molecular pathogenesis of organ-specific autoimmunity in patients with APS-1, the autoantigen responsible for hypoparathyroidism, a hallmark of APS-1 and its most common autoimmune endocrinopathy, has not yet been identified. METHODS We performed immunoscreening of a human parathyroid complementary DNA library, using serum samples from patients with APS-1 and hypoparathyroidism, to identify patients with reactivity to the NACHT leucine-rich-repeat protein 5 (NALP5). Subsequently, serum samples from 87 patients with APS-1 and 293 controls, including patients with other autoimmune disorders, were used to determine the frequency and specificity of autoantibodies against NALP5. In addition, the expression of NALP5 was investigated in various tissues. RESULTS NALP5-specific autoantibodies were detected in 49% of the patients with APS-1 and hypoparathyroidism but were absent in all patients with APS-1 but without hypoparathyroidism, in all patients with other autoimmune endocrine disorders, and in all healthy controls. NALP5 was predominantly expressed in the cytoplasm of parathyroid chief cells. CONCLUSIONS NALP5 appears to be a tissue-specific autoantigen involved in hypoparathyroidism in patients with APS-1. Autoantibodies against NALP5 appear to be highly specific and may be diagnostic for this prominent component of APS-1.


Journal of Immunology | 2007

A Defect of Regulatory T Cells in Patients with Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy

Eliisa Kekäläinen; Heli Tuovinen; Joonas Joensuu; Mikhail Gylling; Rauli Franssila; Nora Pöntynen; Kimmo Talvensaari; Jaakko Perheentupa; Aaro Miettinen; T. Petteri Arstila

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a monogenic recessive disease characterized by autoimmunity against multiple tissues, offers a unique possibility to study the breakdown of self-tolerance in humans. It is caused by mutations in the autoimmune regulator gene (AIRE), which encodes a transcriptional regulator. Work using Aire−/− mice suggests that Aire induces ectopic expression of peripheral Ags and promotes their presentation in the thymus. We have explored reasons for the difference between the comparatively mild phenotype of Aire-deficient mice and human APECED patients. We provide evidence that, unlike in the Aire−/− mice, in the patients a key mediator of active tolerance, the CD4+CD25+ regulatory T (Treg) cell subset is impaired. This was shown by significantly decreased expression of FOXP3 mRNA and protein, decreased function, and alterations in TCR repertoire. Also, in the normal human thymus a concentric accumulation of AIRE+ cells was seen around thymic Hassall’s corpuscles, suggesting that in the patients these cells may be involved in the observed Treg cell failure. In Aire−/− mice the expression of FoxP3 was normal and even increased in target tissues in parallel with the lymphocyte infiltration process. Our results suggest that a Treg cell defect is involved in the pathogenesis of APECED and emphasize the importance of active tolerance mechanisms in preventing human autoimmunity.


Journal of Molecular Medicine | 2008

Critical immunological pathways are downregulated in APECED patient dendritic cells

Nora Pöntynen; Mari Strengell; Niko Sillanpää; Juha Saharinen; Ismo Ulmanen; Ilkka Julkunen; Leena Peltonen

Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. AIRE functions as a transcriptional regulator, and it has a central role in the development of immunological tolerance. AIRE regulates the expression of ectopic antigens in epithelial cells of the thymic medulla and has been shown to participate in the development of peripheral tolerance. However, the mechanism of action of AIRE has remained elusive. To further investigate the role of AIRE in host immune functions, we studied the properties and transcript profiles in in vitro monocyte-differentiated dendritic cells (moDCs) obtained from APECED patients and healthy controls. AIRE-deficient monocytes showed typical DC morphology and expressed DC marker proteins cluster of differentiation 86 and human leukocyte antigen class II. APECED patient-derived moDCs were functionally impaired: the transcriptional response of cytokine genes to pathogens was drastically reduced. Interestingly, some changes were observable already at the immature DC stage. Pathway analyses of transcript profiles revealed that the expression of the components of the host cell signaling pathways involved in cell–cell signalling, innate immune responses, and cytokine activity were reduced in APECED moDCs. Our observations support a role for AIRE in peripheral tolerance and are the first ones to show that AIRE has a critical role in DC responses to microbial stimuli in humans.


Immunogenetics | 2006

Association analysis of the AIRE and insulin genes in Finnish type 1 diabetic patients

Joni A. Turunen; Maija Wessman; Carol Forsblom; Riika Kilpikari; Maija Parkkonen; Nora Pöntynen; Tanja Ilmarinen; Ismo Ulmanen; Leena Peltonen; Per-Henrik Groop

Mutations in the autoimmune regulator (AIRE) gene cause a recessive Mendelian disorder autoimmune polyendocrinopathy syndrome type 1 (APS-1 or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). APS-1 patients develop multiorgan autoimmune diseases including type 1 diabetes (prevalence 12%). The AIRE protein controls the central tolerance induction in the thymus by regulating the expression levels of tissue-specific peripheral antigens, such as insulin. We hypothesized that the insulin gene (INS) polymorphisms together with the AIRE variations may predispose individuals to diabetes. The role of the AIRE gene was tested both independently and on the condition of the INS risk genotype in the Finnish type 1 diabetes sample. A total of 733 type 1 diabetic cases and 735 age- and sex-matched healthy controls were used in the analysis. Five common single nucleotide polymorphisms (SNPs) in the AIRE gene were selected from the public database (dbSNP). The −23HphI polymorphism was used as a surrogate marker for the INS gene promoter repeat. The five genotyped SNPs in the AIRE gene showed no evidence of association with type 1 diabetes. As expected, the INS gene polymorphism −23HphI was significantly associated with susceptibility to type 1 diabetes (P=6.8×10−12, χ2 test). When the subclass of patients carrying the homozygote genotype of the INS gene was used in the analysis, the AIRE polymorphisms showed no association with the disease. In conclusion, the AIRE gene does not seem to contribute to disease susceptibility in Finnish type 1 diabetic patients, whereas the insulin gene represents a notable risk factor for disease in this population.


Cellular Immunology | 2009

γδ T cells develop independently of Aire

Heli Tuovinen; Nora Pöntynen; Mikhail Gylling; Eliisa Kekäläinen; Jaakko Perheentupa; Aaro Miettinen; T. Petteri Arstila

Mutations in the transcriptional regulator Aire disrupt thymic alphabeta T cell selection, causing in humans Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). However, it is not known whether Aire is needed for normal gammadelta T cell development. We show that Aire(-/-) mice have a normal frequency of gammadelta T cells, with TCR repertoire comparable to that of wild-type mice, and normal amount of TCR Cdelta mRNA in ileum and skin. gammadelta T cells did not express increased amounts of CD25 or display hyperproliferation, and were not involved in pathological salivary gland infiltrates. Lastly, the frequency of circulating gammadelta T cells was similar in APECED patients and healthy controls. These data indicate that gammadelta T cells develop independently of Aire and are unlikely to have a significant pathogenetic or protective role in APECED. The antigens responsible for gammadelta and alphabeta T cell selection are thus probably largely different.


Scandinavian Journal of Immunology | 2015

Autoimmunity, Not a Developmental Defect, is the Cause for Subfertility of Autoimmune Regulator (Aire) Deficient Mice

Eliisa Kekäläinen; Nora Pöntynen; Seppo Meri; T. P. Arstila; Hanna Jarva

Autoimmune regulators (AIRE) best characterized role is in the generation immunological tolerance, but it is also involved in many other processes such as spermatogenesis. Loss‐of‐function mutations in AIRE cause a disease called autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED; also called autoimmune polyendocrinopathy syndrome type 1, APS‐1) that is dominated by various autoimmune manifestations, mainly endocrinopathies. Both patients with APECED and Aire−/− mice suffer from varying levels of infertility, but it is not clear if it is a result of an autoimmune tissue damage or more of a developmental defect. In this study, we wanted to resolve whether or not the reduced fertility of Aire−/− mice is dependent on the adaptive immune system and therefore a manifestation of autoimmunity in these mice. We generated lymphopenic mice without Aire expression that were devoid of the autoimmune manifestations previously reported in immunocompetent Aire−/− mice. These Aire−/−Rag1−/− mice regained full fertility. This confirms that the development of infertility in Aire−/− mice requires a functional adaptive immune system. We also show that only the male Aire−/− mice are subfertile, whereas Aire−/− females produce litters normally. Moreover, the male subfertility can be adoptively transferred with lymphocytes from Aire−/− donor mice to previously fertile lymphopenic Aire−/− recipients. Our data show that subfertility in Aire−/− mice is dependent on a functional adaptive immune system thus confirming its autoimmune aetiology.


Immunology Letters | 2015

Lymphopenia-induced proliferation in the absence of functional Autoimmune regulator (Aire) induces colitis in mice

Eliisa Kekäläinen; Maija-Katri Lehto; Eero Smeds; Nora Pöntynen; Pirkka T. Pekkarinen; Ismo Ulmanen; Aaro Miettinen; T. Petteri Arstila

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in Autoimmune regulator (Aire), a transcriptional regulator of negative selection in thymus. However, Aire is also expressed in periphery, but the full range of Aires peripheral function is unknown. Here, we transferred lymphocytes from wildtype donors into lymphopenic recipients with or without functional Aire. Following cell proliferation thus took place in Aire-sufficient or deficient environment. The wildtype lymphocytes hyperproliferated and induced disease in lymphopenic Aire(-/-) but not in Aire(+/+) recipients. The disease was characterized by diarrhea, inflammation, and colitis, and in some recipients pancreatitis, gastritis, and hepatitis was also found. Our results identify Aire as an important regulator of peripheral T cell homeostasis in gastrointestinal tissues. Given a suitable trigger the absence of peripheral Aire leads to dysregulated T cell proliferation and disease.


Journal of Autoimmunity | 2006

Aire deficient mice do not develop the same profile of tissue-specific autoantibodies as APECED patients

Nora Pöntynen; Aaro Miettinen; T. Petteri Arstila; Olle Kämpe; Mohammad Alimohammadi; Outi Vaarala; Leena Peltonen; Ismo Ulmanen


Archive | 2009

NALP5 - a Target for Autoantibodies in AIRE Deficient Mice Reflecting the Autoimmune Status

Mohammad Alimohammadi; Gabor Szinnai; François-Xavier Hubert; Nora Pöntynen; Antony Shum; Maureen Su; Åsa Hallgren; Noriko Shikama; Sarah Kinkel; Peyman Björklund; Hamish S. Scott; Mark S. Anderson; Georg A. Holländer; Olle Kämpe


The New England Journal of Medicine | 2006

Autoimmune Polyendocrine Syndrome Type 1 : NALP5 in Autoimmune Polyendocrine Syndrome Type 1

Mohammad Alimohammadi; Peyman Björklund; Åsa Hallgren; Nora Pöntynen; Gabor Szinnai; Noriko Shikama; Marcel P. Keller; Olov Ekwall; Sarah Kinkel; Eystein S. Husebye; Jan Gustafsson; Fredrik Rorsman; Leena Peltonen; Corrado Betterle; Jaakko Perheentupa; Göran Åkerström; Gunnar Westin; Hamish S. Scott; Georg A. Holländer; Olle Kämpe

Collaboration


Dive into the Nora Pöntynen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge