Nóra Veronika Nagy
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nóra Veronika Nagy.
Dalton Transactions | 2012
Isabel Correia; Tamás Jakusch; Enoch Cobbinna; Sameena Mehtab; Isabel Tomaz; Nóra Veronika Nagy; Antal Rockenbauer; João Costa Pessoa; Tamás Kiss
The understanding of the biotransformations of insulin mimetic vanadium complexes in human blood and its transport to target cells is an essential issue in the development of more effective drugs. We present the study of the interaction of oxovanadium(iv) with human serum albumin (HSA) by electron paramagnetic resonance (EPR), circular dichroism (CD) and visible absorption spectroscopy. Metal competition studies were done using Cu(II) and Zn(II) as metal probes. The results show that V(IV)O occupies two types of binding sites in albumin, which compete not only with each other, but also with hydrolysis of the metal ion. In one of the sites the resulting V(IV)O-HSA complex has a weak visible CD signal and its X-band EPR spectrum may be easily measured. This was assigned to amino acid side chains of the ATCUN site. The other binding site shows stronger signals in the CD in the visible range, but has a hardly measurable EPR signal; it is assigned to the multi metal binding site (MBS) of HSA. Studies with fatted and defatted albumin show the complexity of the system since conformational changes, induced by the binding of fatty acids, decrease the ability of V(IV)O to bind albumin. The possibility and importance of ternary complex formation between V(IV)O, HSA and several drug candidates - maltol (mal), picolinic acid (pic), 2-hydroxypyridine-N-oxide (hpno) and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone (dhp) was also evaluated. In the presence of maltol the CD and EPR spectra significantly change, indicating the formation of ternary VO-HSA-maltol complexes. Modeling studies with amino acids and peptides were used to propose binding modes. Based on quantitative RT EPR measurements and CD data, it was concluded that in the systems with mal, pic, hpno, and dhp (V(IV)OL(2))(n)(HSA) species form, where the maximum value for n is at least 6 (mal, pic). The degree of formation of the ternary species, corresponding to the reaction V(IV)OL(2) + HSA -->/<-- V(IV)OL(2)(HSA) is hpno > pic ≥ mal > dhp. (V(IV)OL)(n)(HSA) type complexes are detected exclusively with pic. Based on the spectroscopic studies we propose that in the (V(IV)OL(2))(n)(HSA) species the protein bounds to vanadium through the histidine side chains.
Dalton Transactions | 2010
Bernadette S. Creaven; Eszter Czeglédi; Michael Devereux; Éva A. Enyedy; Agnieszka Foltyn-Arfa Kia; Dariusz Karcz; Andrew Kellett; Siobhán McClean; Nóra Veronika Nagy; Andy Noble; Antal Rockenbauer; Terézia Szabó-Plánka; Maureen Walsh
The coordination modes of copper(II) complexes of Schiff base-derived coumarin ligands, which had previously shown good anti-Candida activity, were investigated by pH-potentiometric and UV-Vis spectroscopic methods. These studies confirmed the coordination mode of the ligands to be through the N of the imine and deprotonated phenol of the coumarin-derived ligand in solution. In addition, the more active complexes and their corresponding ligands were investigated in the presence of copper(II) in liquid and frozen solution by ESR spectroscopic methods. A series of secondary amine derivatives of the Schiff base ligands, were isolated with good solubility characteristics but showed little anti-Candida activity. However, cytotoxicity studies of the secondary amines, together with the copper complexes and their corresponding ligands, against human colon cancer and human breast cancer cells identified the chemotherapeutic potential of these new ligands.
Inorganic Chemistry | 2012
Miljan N. M. Milunovic; Éva A. Enyedy; Nóra Veronika Nagy; Tamás Kiss; Robert Trondl; Michael A. Jakupec; Bernhard K. Keppler; Regina Krachler; Ghenadie Novitchi; Vladimir B. Arion
Two enantiomerically pure thiosemicarbazone-proline conjugates with enhanced aqueous solubility, namely, 2-hydroxy-3-methyl-(S)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [L-Pro-STSC or (S)-H(2)L] and 2-hydroxy-3-methyl-(R)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [D-Pro-STSC or (R)-H(2)L] have been synthesized and characterized by elemental analysis, spectroscopic methods (UV-vis and (1)H and (13)C NMR), and electrospray ionization mass spectrometry. The metal complexation behavior of L-Pro-STSC, stoichiometry, and thermodynamic stability of iron(II), iron(III), copper(II), and zinc(II) complexes in 30% (w/w) dimethyl sulfoxide/H(2)O solvent mixture have been studied by pH-potentiometric, UV-vis-spectrophotometric, circular dichroism, electron paramagnetic resonance, (1)H NMR spectroscopic, and spectrofluorimetric measurements. By the reaction of CuCl(2)·2H(2)O with (S)-H(2)L and (R)-H(2)L, respectively, the complexes [Cu[(S)-H(2)L]Cl]Cl and [Cu[(R)-H(2)L]Cl]Cl have been prepared and comprehensively characterized. An X-ray diffraction study of [Cu[(R)-H(2)L]Cl]Cl showed the formation of a square-planar copper(II) complex, which builds up stacks with interplanar separation of 3.3 Å. The antiproliferative activity of two chiral ligands and their corresponding copper(II) complexes has been tested in two human cancer cell lines, namely, SW480 (colon carcinoma) and CH1 (ovarian carcinoma). The thiosemicarbazone-proline conjugates L- and D-Pro-STSC show only moderate cytotoxic potency with IC(50) values of 62 and 75 μM, respectively, in CH1 cells and >100 μM in SW480 cells. However, the corresponding copper(II) complexes are 13 and 5 times more potent in CH1 cells, based on a comparison of IC(50) values, and in SW480 cells the increase in the antiproliferative activity is even higher. In both tested cell lines, L-Pro-STSC as well as its copper(II) complex show slightly stronger antiproliferative activity than the compounds with a D-Pro moiety, yielding IC(50) values of 4.6 and 5.5 μM for [Cu(L-Pro-STSC)Cl]Cl in CH1 and SW480 cells, respectively.
Journal of Inorganic Biochemistry | 2008
Zoltán Paksi; Attila Jancsó; Francesca Pacello; Nóra Veronika Nagy; Andrea Battistoni; Tamás Gajda
The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H(2)N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine epsilon-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (K(D,Zn)=1.6x10(-9)M and K(D,Cu)=5.0x10(-12)M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These K(D) values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.
Journal of Inorganic Biochemistry | 2009
András Kolozsi; Attila Jancsó; Nóra Veronika Nagy; Tamás Gajda
A histidine-rich peptide HSHRDFQPVLHL-NH(2) (L), identical with the N-terminal fragment of the anti-angiogenic human endostatin has been synthesized. Endostatin is a recently identified broad spectrum angiogenesis inhibitor, which inhibits 65 different tumor types. The N-terminal 25-mer peptide fragment of human endostatin has the same antitumor effect as the entire protein. The zinc(II) binding is crucial for the antitumor effect in both cases. Our peptide may provide all critical interactions for zinc(II) binding present in the N-terminal 25-mer peptide fragment. In addition, the N-terminus of human endostatin has a supposedly high affinity binding site for copper(II), similar to human serum albumin. Since copper(II) is intimately involved in angiogenesis, this may have biological relevance. In order to determine the metal binding properties of the N-terminal fragment of endostatin, we performed equilibrium, UV-visible (UV-vis), CD, EPR and NMR studies on the zinc(II) and copper(II) complexes of L. In the presence of zinc(II) the formation of a stable [NH(2),3N(im),COO(-)] coordinated complex was detected in the neutral pH-range. This coordination mode is probably identical to that present in the zinc(II) complex of the above mentioned N-terminal 25-mer peptide fragment of human endostatin. Moreover, L has extremely high copper(II) binding affinity, close to those of copper-containing metalloenzymes, and forms albumin-like [NH(2),N(-),N(-),N(im)] coordinated copper(II) complex in the neutral pH-range, which may suggest that copper(II) binding is involved in the biological activity of endostatin.
Journal of Inorganic Biochemistry | 2009
Attila Jancsó; András Kolozsi; Béla Gyurcsik; Nóra Veronika Nagy; Tamás Gajda
The zinc(II) and copper(II) binding ability of two oligopeptide fragments, Ac-HHPHG-NH(2) and Ac-HHPHGHHPHG-NH(2), derived from the repeat-region of the His-Pro-rich domain of histidine-rich glycoprotein (HRG) and the structure of the formed complexes have been investigated by potentiometry, NMR-, UV-visible-, CD-, SRCD- and EPR spectroscopy. Exclusive coordination of the side-chain imidazoles of the peptides has been observed with both metal ions in the acidic and neutral pH range. While the three His units of the pentapeptide resulted in a modest stability of the ML complexes, the decapeptide with its increased number of His residues offered a high-affinity metal binding site for both metal ions with the participation of at least four nitrogen donors. Due to the high number of potential donor groups, the formation of binding isomers of the protonated and parent complexes is very likely. Both peptides show a synchrotron radiation (SR) CD-pattern resembling to that of the polyproline II structure, similarly to that of the His-Pro-rich domain of the HRG protein. The longer sequence was shown to bind a second metal ion in the slightly acidic pH-range. The determined stability data suggest a remarkable extra stabilization emerging in the decapeptide for the coordination of the second metal ions, as compared to the ML complexes of the pentapeptide. Whether the observed cooperativity has similarities to the cooperative metal binding feature of HRG or the two phenomena have different sources is a question yet to be clarified.
Synthetic Communications | 2000
Károly Felföldi; Mária Sutyinszky; Nóra Veronika Nagy; István Pálinkó
Abstract A series of stereoisomeric o-methoxy-substituted 2,3-diphenyl propenoic acids and their methyl esters have been synthesized. The E isomers were prepared by a modified Perkin condensation (substituted benzaldehyde, phenylacetic acid, Et3N/acetic anhydride). The difficult to access Z isomers were obtained conveniently in good yields when the appropriate coumarin derivatives were allowed to react with KOH and CH3I in DMSO.
Inorganic Chemistry | 2013
Felix Bacher; Éva A. Enyedy; Nóra Veronika Nagy; Antal Rockenbauer; Gabriella M. Bognár; Robert Trondl; Maria S. Novak; Erik Klapproth; Tamás Kiss; Vladimir B. Arion
Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.
Journal of Biomolecular Structure & Dynamics | 2014
Nitin K. Pandey; Sudeshna Ghosh; Nóra Veronika Nagy; Swagata Dasgupta
Protein aggregation is related to a series of pathological disorders the main cause of which are the fibrillar species generated during the process. Human serum albumin (HSA) undergoes rapid fibrillation in the presence of Cu(II) at pH 7.4 in 60% ethanol after 6-h incubation (∼65 °C) followed by room temperature incubation. Here, we have investigated the effect of a stoichiometric variation of Cu(II) on the self-assembly of HSA using Congo red and thioflavin T dye-binding studies, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, fluorescence microscopy and transmission electron microscopy. The simulation of EPR spectra suggests that with the increment in Cu(II) ion concentration, there is a change in ligand field coordination. Kinetic parameters indicate reduced cooperativity that may be related to the nonspecific coordination on increment of Cu(II) concentration. Cu(II) is also able to direct the accumulation of a large number of fibers along with a formation of dense fibrillar network which is evident from microscopic images.
Journal of Inorganic Biochemistry | 2012
Dávid Árus; Attila Jancsó; Dániel Szunyogh; Ferenc Matyuska; Nóra Veronika Nagy; Eufrozina A. Hoffmann; Tamás Körtvélyesi; Tamás Gajda
The Cu,Zn superoxide dismutases (Cu,Zn SOD) isolated from some Gram-negative bacteria possess a His-rich N-terminal metal binding extension. The N-terminal domain of Haemophilus ducreyi Cu,Zn SOD has been previously proposed to play a copper(II)-, and may be a zinc(II)-chaperoning role under metal ion starvation, and to behave as a temporary (low activity) superoxide dismutating center if copper(II) is available. The N-terminal extension of Cu,Zn SOD from Actinobacillus pleuropneumoniae starts with an analogous sequence (HxDHxH), but contains considerably fewer metal binding sites. In order to study the possibility of the generalization of the above mentioned functions over all Gram-negative bacteria possessing His-rich N-terminal extension, here we report thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first eight amino acids (HADHDHKK-NH(2), L) of the enzyme isolated from A. pleuropneumoniae. In equimolar solutions of Cu(II)/Zn(II) and the peptide the MH(2)L complexes are dominant in the neutral pH-range. L has extraordinary copper(II) sequestering capacity (K(D,Cu)=7.4×10(-13)M at pH 7.4), which is provided only by non-amide (side chain) donors. The central ion in CuH(2)L is coordinated by four nitrogens {NH(2),3N(im)} in the equatorial plane. In ZnH(2)L the peptide binds to zinc(II) through a {NH(2),2N(im),COO(-)} donor set, and its zinc binding affinity is relatively modest (K(D,Zn)=4.8×10(-7)M at pH 7.4). Consequently, the presented data do support a general chaperoning role of the N-terminal His-rich region of Gram-negative bacteria in copper(II) uptake, but do not confirm similar function for zinc(II). Interestingly, the complex CuH(2)L has very high SOD-like activity, which may further support the multifunctional role of the copper(II)-bound N-terminal His-rich domain of Cu,Zn SODs of Gram-negative bacteria. The proposed structure for the MH(2)L complexes has been verified by semiempirical quantum chemical calculations (PM6), too.