Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nora Zidane is active.

Publication


Featured researches published by Nora Zidane.


Nature Genetics | 2009

Comparative genomic and phylogeographic analysis of Mycobacterium leprae.

Marc Monot; Nadine Honoré; Thierry Garnier; Nora Zidane; Diana Sherafi; Alberto Paniz-Mondolfi; Masanori Matsuoka; G. Michael Taylor; Helen D. Donoghue; Abi Bouwman; Simon Mays; Claire Watson; Diana N. J. Lockwood; Ali Khamispour; Yahya Dowlati; Shen Jianping; Thomas H. Rea; Lucio Vera-Cabrera; Mariane Martins de Araújo Stefani; Sayera Banu; Murdo Macdonald; Bishwa Raj Sapkota; John S. Spencer; Jérôme Thomas; Keith Harshman; Pushpendra Singh; Philippe Busso; Alexandre Gattiker; Jacques Rougemont; Patrick J. Brennan

Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6× coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38× coverage) and NHDP63 (46× coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.


PLOS ONE | 2008

Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

Mathieu Picardeau; Dieter M. Bulach; Christiane Bouchier; Richard L. Zuerner; Nora Zidane; Peter Wilson; Sophie Creno; Elizabeth Kuczek; Simona Bommezzadri; John Davis; Annette McGrath; Matthew Johnson; Caroline Boursaux-Eude; Torsten Seemann; Zoé Rouy; Ross L. Coppel; Julian I. Rood; Aurélie Lajus; John K. Davies; Claudine Médigue; Ben Adler

Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water.


Journal of Bacteriology | 2010

Genome Sequence of Streptococcus gallolyticus: Insights into Its Adaptation to the Bovine Rumen and Its Ability To Cause Endocarditis

Christophe Rusniok; Elisabeth Couvé; Violette Da Cunha; Rachida El Gana; Nora Zidane; Christiane Bouchier; Claire Poyart; Roland Leclercq; Patrick Trieu-Cuot; Philippe Glaser

Streptococcus gallolyticus (formerly known as Streptococcus bovis biotype I) is an increasing cause of endocarditis among streptococci and frequently associated with colon cancer. S. gallolyticus is part of the rumen flora but also a cause of disease in ruminants as well as in birds. Here we report the complete nucleotide sequence of strain UCN34, responsible for endocarditis in a patient also suffering from colon cancer. Analysis of the 2,239 proteins encoded by its 2,350-kb-long genome revealed unique features among streptococci, probably related to its adaptation to the rumen environment and its capacity to cause endocarditis. S. gallolyticus has the capacity to use a broad range of carbohydrates of plant origin, in particular to degrade polysaccharides derived from the plant cell wall. Its genome encodes a large repertoire of transporters and catalytic activities, like tannase, phenolic compounds decarboxylase, and bile salt hydrolase, that should contribute to the detoxification of the gut environment. Furthermore, S. gallolyticus synthesizes all 20 amino acids and more vitamins than any other sequenced Streptococcus species. Many of the genes encoding these specific functions were likely acquired by lateral gene transfer from other bacterial species present in the rumen. The surface properties of strain UCN34 may also contribute to its virulence. A polysaccharide capsule might be implicated in resistance to innate immunity defenses, and glucan mucopolysaccharides, three types of pili, and collagen binding proteins may play a role in adhesion to tissues in the course of endocarditis.


Environmental Microbiology | 2009

Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotypic diversity.

Frédérique Le Roux; Mohamed Zouine; Nesrine Chakroun; Johan Binesse; Denis Saulnier; Christiane Bouchier; Nora Zidane; Laurence Ma; Christophe Rusniok; Aurélie Lajus; Carmen Buchrieser; Claudine Médigue; Martin F. Polz; Didier Mazel

Vibrio splendidus is a dominant Vibrio species in seawater presenting a remarkable genetic diversity; several strains have been linked to invertebrates mortality. We report the complete genome sequence of V. splendidus LGP32, an oyster pathogen, and its comparison with partial genome sequences from related strains. As is typical for the genus, V. splendidus LGP32 contains two chromosomes (3.29 and 1.67 Mb) and most essential cellular processes are encoded by chromosome 1. Comparison with two other V. splendidus partial genome sequences (strains 12B01 and Med222) confirms the previously suggested high genotypic diversity within this species and led to the identification of numerous strain-specific regions that could frequently not be assigned to a specific mechanisms of recombination. Surprisingly, the chromosomal integron, the most variable genetic element in all other Vibrio species analysed to date, is absent from 12B01 and inactivated by a mobile element in Med222, while in LGP32 it only contains a limited number of cassettes. Finally, we found that the LGP32 integron contains a new dfrA cassette, related to those found in resistance integrons of gram-negative clinical isolates. Those results suggest that marine Vibrio can be a source of antibiotic resistance genes.


Cell | 2016

Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations

Hélène Quach; Maxime Rotival; Julien Pothlichet; Yong-Hwee Eddie Loh; Michael Dannemann; Nora Zidane; Guillaume Laval; Etienne Patin; Christine Harmant; Marie Lopez; Matthieu Deschamps; Nadia Naffakh; Darragh Duffy; Anja Coen; Geert Leroux-Roels; Frédéric Clement; Anne Boland; Jean-François Deleuze; Janet Kelso; Matthew L. Albert; Lluis Quintana-Murci

Summary Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli—ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus—and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.


Biosensors and Bioelectronics | 2011

Reagentless fluorescent biosensors from artificial families of antigen binding proteins.

Frederico F. Miranda; Elodie Brient-Litzler; Nora Zidane; Frédéric Pecorari; Hugues Bedouelle

Antibodies and artificial families of antigen binding proteins (AgBP) are constituted by a connected set of hypervariable (or randomized) residue positions, supported by a constant polypeptide backbone. The residues that form the binding site for a given antigen, are selected among the hypervariable residues. We showed that it is possible to transform any AgBP of these families into a reagentless fluorescent biosensor, specific of the target antigen, simply by coupling a solvatochromic fluorophore to one of the hypervariable residues that have little or no importance for the interaction with the antigen, after changing this residue into cysteine by mutagenesis. We validated this approach with a DARPin (Designed Ankyrin Repeat Protein) and a Nanofitin (also known as Affitin) with high success rates. Reagentless fluorescent biosensors recognize their antigen in an immediate, quantitative, selective and specific way, without any manipulation of the sample to analyze or addition of reagent.


PLOS ONE | 2014

Common and rare variant analysis in early-onset bipolar disorder vulnerability.

Stéphane Jamain; Sven Cichon; Bruno Etain; Thomas W. Mühleisen; Alexander Georgi; Nora Zidane; Lucie Chevallier; Jasmine Deshommes; Aude Nicolas; Annabelle Henrion; Franziska Degenhardt; Manuel Mattheisen; Lutz Priebe; Flavie Mathieu; Jean-Pierre Kahn; Chantal Henry; Anne Boland; Diana Zelenika; Ivo Gut; Simon Heath; Mark Lathrop; Wolfgang Maier; Margot Albus; Marcella Rietschel; Thomas G. Schulze; Francis J. McMahon; John R. Kelsoe; Marian Lindsay Hamshere; Nicholas John Craddock; Markus M. Nöthen

Bipolar disorder is one of the most common and devastating psychiatric disorders whose mechanisms remain largely unknown. Despite a strong genetic contribution demonstrated by twin and adoption studies, a polygenic background influences this multifactorial and heterogeneous psychiatric disorder. To identify susceptibility genes on a severe and more familial sub-form of the disease, we conducted a genome-wide association study focused on 211 patients of French origin with an early age at onset and 1,719 controls, and then replicated our data on a German sample of 159 patients with early-onset bipolar disorder and 998 controls. Replication study and subsequent meta-analysis revealed two genes encoding proteins involved in phosphoinositide signalling pathway (PLEKHA5 and PLCXD3). We performed additional replication studies in two datasets from the WTCCC (764 patients and 2,938 controls) and the GAIN-TGen cohorts (1,524 patients and 1,436 controls) and found nominal P-values both in the PLCXD3 and PLEKHA5 loci with the WTCCC sample. In addition, we identified in the French cohort one affected individual with a deletion at the PLCXD3 locus and another one carrying a missense variation in PLCXD3 (p.R93H), both supporting a role of the phosphatidylinositol pathway in early-onset bipolar disorder vulnerability. Although the current nominally significant findings should be interpreted with caution and need replication in independent cohorts, this study supports the strategy to combine genetic approaches to determine the molecular mechanisms underlying bipolar disorder.


Protein Engineering Design & Selection | 2013

Thermodynamic stability of domain III from the envelope protein of flaviviruses and its improvement by molecular design

Nora Zidane; Philippe Dussart; Laetitia Bremand; Maria Elena Villani; Hugues Bedouelle

The Flavivirus genus includes widespread and severe human pathogens like the four serotypes of dengue virus (DENV1 to DENV4), yellow fever virus, Japanese encephalitis virus and West Nile virus. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by virus neutralizing antibodies. Its structural, antigenic and immunogenic properties have been thoroughly studied contrary to its physico-chemical properties. Here, the ED3 domains of the above pathogenic flaviviruses were produced in the periplasm of Escherichia coli. Their thermodynamic stabilities were measured and compared in experiments of unfolding equilibriums, induced with chemicals or heat and monitored through protein fluorescence. A designed ED3 domain, with the consensus sequence of DENV strains from all serotypes, was highly stable. The low stability of the ED3 domain from DENV3 was increased by three changes of residues in the protein core without affecting its reactivity towards DENV-infected human serums. Additional changes showed that the stability of ED3 varied with the DENV3 genotype. The T(m) of ED3 was higher than 69°C for all the tested viruses and reached 86°C for the consensus ED3. The latter, deprived of its disulfide bond by mutations, was predominantly unfolded at 20°C. These results will help better understand and design the properties of ED3 for its use as diagnostic, vaccine or therapeutic tools.


Microbes and Infection | 2013

In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Nicolas Hegerle; Lamya Rayat; Gregory J. Dore; Nora Zidane; Hugues Bedouelle; Nicole Guiso

Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are three closely related pathogens. They all possess the gene coding for the Bordetella type three secretion system effector A (bteA) toxin that became a focus of interest since it was demonstrated that B. pertussis Japanese non-vaccine-type isolates produce BteA unlike vaccine-type isolates. We thus explored the in-vitro production of BteA in B. pertussis isolates collected in France during periods of different vaccine policy as well as in B. parapertussis and B. bronchiseptica isolates. We also analyzed the in-vivo induction of anti-BteA antibodies after infection with different isolates of the three species. We produced a recombinant His6-tagged BteA (rBteA) protein. Specific rBteA polyclonal serum was prepared which enabled us to screen Bordetella isolates for in-vitro BteA production: 99.0% (293/296) of tested B. pertussis isolates, including French vaccine strains, and 97.5% (79/81) of B. bronchiseptica isolates produced BteA in-vitro but only the latter was capable of inducing an in-vivo immune response. No in-vitro or in-vivo production of BteA was detected by any of the B. parapertussis isolates tested.


Bioscience Reports | 2012

The folded and disordered domains of human ribosomal protein SA have both idiosyncratic and shared functions as membrane receptors

Nora Zidane; Mohamed B. Ould-Abeih; Isabelle Petit-Topin; Hugues Bedouelle

The human RPSA [ribosomal protein SA; also known as LamR1(laminin receptor 1)] belongs to the ribosome but is also a membrane receptor for laminin, growth factors, prion, pathogens and the anticarcinogen EGCG (epigallocatechin-gallate). It contributes to the crossing of the blood–brain barrier by neurotropic viruses and bacteria, and is a biomarker of metastasis. RPSA includes an N-terminal domain, which is folded and homologous to the prokaryotic RPS2, and a C-terminal extension, which is intrinsically disordered and conserved in vertebrates. We used recombinant derivatives of RPSA and its N- and C-domains to quantify its interactions with ligands by in-vitro immunochemical and spectrofluorimetric methods. Both N- and C-domains bound laminin with KD (dissociation constants) of 300 nM. Heparin bound only to the N-domain and competed for binding to laminin with the negatively charged C-domain, which therefore mimicked heparin. EGCG bound only to the N-domain with a KD of 100 nM. Domain 3 of the envelope protein from yellow fever virus and serotypes-1 and -2 of dengue virus bound preferentially to the C-domain whereas that from West Nile virus bound only to the N-domain. Our quantitative in-vitro approach should help clarify the mechanisms of action of RPSA, and ultimately fight against cancer and infectious agents.

Collaboration


Dive into the Nora Zidane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Vandenesch

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Jerome Etienne

École normale supérieure de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge