Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noraziah Mohamad Zin is active.

Publication


Featured researches published by Noraziah Mohamad Zin.


International Journal of Biomaterials | 2012

Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties

Ling Yien Ing; Noraziah Mohamad Zin; Atif Sarwar; Haliza Katas

The need of natural antimicrobials is paramount to avoid harmful synthetic chemicals. The study aimed to determine the antifungal activity of natural compound chitosan and its nanoparticles forms against Candida albicans, Fusarium solani and Aspergillus niger. Chitosan nanoparticles were prepared from low (LMW), high molecular weight (HMW) chitosan and its derivative, trimethyl chitosan (TMC). Particle size was increased when chitosan/TMC concentration was increased from 1 to 3 mg/mL. Their zeta potential ranged from +22 to +55 mV. Chitosan nanoparticles prepared from different concentrations of LMW and HMW were also found to serve a better inhibitory activity against C. albicans (MICLMW = 0.25–0.86 mg/mL and MICHMW = 0.6–1.0 mg/mL) and F. solani (MICLMW = 0.86–1.2 mg/mL and MICHMW = 0.5–1.2 mg/mL) compared to the solution form (MIC = 3 mg/mL for both MWs and species). This inhibitory effect was also influenced by particle size and zeta potential of chitosan nanoparticles. Besides, Aspergillus niger was found to be resistant to chitosan nanoparticles except for nanoparticles prepared from higher concentrations of HMW. Antifungal activity of nanoparticles prepared from TMC was negligible. The parent compound therefore could be formulated and applied as a natural antifungal agent into nanoparticles form to enhance its antifungal activity.


Evidence-based Complementary and Alternative Medicine | 2012

In Vitro Antibacterial Activity of Galls of Quercus infectoria Olivier against Oral Pathogens

Dayang Fredalina Basri; Liy Si Tan; Noraziah Mohamad Zin

The galls of Quercus infectoria are commonly used in Malay traditional medicine to treat wound infections after childbirth. In India, they are employed traditionally as dental applications such as that in treatment of toothache and gingivitis. The aim of the present study was to evaluate the antibacterial activity of galls of Quercus infectoria Olivier against oral bacteria which are known to cause dental caries and periodontitis. Methanol and acetone extracts were screened against two Gram-positive bacteria (Streptococcus mutans ATCC 25175 and Streptococcus salivarius ATCC 13419) and two Gram-negative bacteria (Porphyromonas gingivalis ATCC 33277 and Fusobacterium nucleatum ATCC 25586). The screening test of antibacterial activity was performed using agar-well diffusion method. Subsequently, minimum inhibitory concentration (MIC) was determined by using twofold serial microdilution method at a concentration ranging between 0.01 mg/mL and 5 mg/mL. Minimum bactericidal concentration (MBC) was obtained by subculturing microtiter wells which showed no changes in colour of the indicator after incubation. Both extracts showed inhibition zones which did not differ significantly (P < 0.05) against each tested bacteria. Among all tested bacteria, S. salivarius was the most susceptible. The MIC ranges for methanol and acetone extracts were the same, between 0.16 and 0.63 mg/mL. The MBC value, for methanol and acetone extracts, was in the ranges 0.31–1.25 mg/mL and 0.31–2.50 mg/mL, respectively. Both extracts of Q. infectoria galls exhibited similar antibacterial activity against oral pathogens. Thus, the galls may be considered as effective phytotherapeutic agents for the prevention of oral pathogens.


Molecules | 2014

Volatile Profiling of Aromatic Traditional Medicinal Plant, Polygonum minus in Different Tissues and Its Biological Activities

Rafidah Ahmad; Syarul Nataqain Baharum; Hamidun Bunawan; Min-Ki Lee; Normah Mohd Noor; Emelda Roseleena Rohani; Norashikin Ilias; Noraziah Mohamad Zin

The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.


PLOS ONE | 2015

Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

Atif Sarwar; Haliza Katas; Siti Noradila Samsudin; Noraziah Mohamad Zin

Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.


International Journal of Systematic and Evolutionary Microbiology | 2013

Streptomyces kebangsaanensis sp. nov., an endophytic actinomycete isolated from an ethnomedicinal plant, which produces phenazine-1-carboxylic acid.

Nurul ‘Izzah Mohd Sarmin; Geok Yuan Annie Tan; Christopher M. M. Franco; RuAngelie Edrada-Ebel; Jalifah Latip; Noraziah Mohamad Zin

A spore-forming streptomycete designated strain SUK12(T) was isolated from a Malaysian ethnomedicinal plant. Its taxonomic position, established using a polyphasic approach, indicates that it is a novel species of the genus Streptomyces. Morphological and chemical characteristics of the strain were consistent with those of members of the genus Streptomyces. Analysis of the almost complete 16S rRNA gene sequence placed strain SUK12(T) in the genus Streptomyces where it formed a distinct phyletic line with recognized species of this genus. The strain exhibited highest sequence similarity to Streptomyces corchorusii DSM 40340(T) (98.2 %) followed by Streptomyces chrestomyceticus NRRL B-3310(T) (98.1 %). The G+C content of the genomic DNA was 74 mol%. Chemotaxonomic data [MK-9(H8) as the major menaquinone; LL-diaminopimelic acid as a component of cell-wall peptidoglycan; C12 : 0, C14 : 0, C15 : 0 and C17 : 1 as the major fatty acids; phospholipid type II] supported the affiliation of strain SUK12(T) to the genus Streptomyces. The results of the phylogenetic analysis and phenotypic data derived from this and previous studies allowed the genotypic and phenotypic differentiation of strain SUK12(T) from the related species of the genus Streptomyces. The DNA-DNA relatedness value between strain SUK12(T) and S. corchorusii DSM 40340(T) is 18.85±4.55 %. Strain SUK12(T) produces phenazine-1-carboxylic acid, known as tubermycin B, an antibacterial agent. It is proposed, therefore, that strain SUK12(T) ( = DSM 42048(T) = NRRL B-24860(T)) be classified in the genus Streptomyces as the type strain of Streptomyces kebangsaanensis sp. nov.


Microbial Ecology | 2018

Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species

Emmanuel Haruna; Noraziah Mohamad Zin; Dorsaf Kerfahi; Jonathan M. Adams

The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80–90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.


Journal of Microbiology | 2015

In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10

Mohd Shukri Baba; Noraziah Mohamad Zin; Zainal Abidin Abu Hassan; Jalifah Latip; Florence Pethick; Iain S. Hunter; RuAngelie Edrada-Ebel; Paul Herron

Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.


Journal of Microbiology and Biotechnology | 2017

Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic streptomyces SUK 25 with antimicrobial and cytotoxic activities

Muhanna M. Alshaibani; Noraziah Mohamad Zin; Juriyati Jalil; Nik Marzuki Sidik; Siti Junaidah Ahmad; Nurkhalida Kamal; RuAngelie Edrada-Ebel

In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thorntons medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo-(L-Val-L-Pro), cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Phe), and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.


Drug Design Development and Therapy | 2016

Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity

Muhanna M. Alshaibani; Juriyati Jalil; Nik Marzuki Sidik; RuAngelie Edrada-Ebel; Noraziah Mohamad Zin

Background Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity). Aim This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476. Materials and methods The production of secondary metabolites by this strain was optimized through Thronton’s media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance. Results During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol. Conclusion On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.


Drug Design Development and Therapy | 2017

Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10

Noraziah Mohamad Zin; Mohd Shukri Baba; Abu Hassan Zainal-Abidin; Jalifah Latip; Nw Mazlan; RuAngelie Edrada-Ebel

Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg−1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg−1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.

Collaboration


Dive into the Noraziah Mohamad Zin's collaboration.

Top Co-Authors

Avatar

Dayang Fredalina Basri

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Nik Marzuki Sidik

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mohd Shukri Baba

International Islamic University Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jalifah Latip

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Atif Sarwar

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Haliza Katas

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hui Min Neoh

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Juriyati Jalil

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Juwairiah Remali

National University of Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge