Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norbert Conrads is active.

Publication


Featured researches published by Norbert Conrads.


Medical Imaging 1994: Physics of Medical Imaging | 1994

Fluoroscopic x-ray imaging with amorphous silicon thin-film arrays

Ulrich Schiebel; Norbert Conrads; Norbert Jung; Martin Weibrecht; Herfried Karl Wieczorek; T. Zaengel; M. J. Powell; I. D. French; C. Glasse

The dream of an all-solid state large area x-ray image sensor with digital readout and full dynamic performance will most probably find a first realization in 2D thin-film amorphous silicon arrays. In this paper we address in particular the evaluation of the limits of the signal/noise ratio in this concept. Using small prototype detectors measurements of MTF and noise power spectra have been made as a function of x-ray dose. The results are given in terms of the detective quantum efficiency as a function of dose and spatial frequency. We further present an analysis of the different noise sources and their dependence on the detector parameters, and we provide estimates on the maximum signals that may be achieved per unit dose. The intrinsic lag of the amorphous silicon photodiodes causes a second problem area with this type of x-ray detectors. Especially in radiography/fluoroscopy mixed applications, memory effects may not be negligible.


Medical Imaging 2004: Physics of Medical Imaging | 2004

Performance of standard fluoroscopy antiscatter grids in flat-detector-based cone-beam CT

Jens Wiegert; Matthias Bertram; Dirk Schaefer; Norbert Conrads; Jan Timmer; Til Aach; Georg Rose

In this paper, the performance of focused lamellar anti-scatter grids, which are currently used in fluoroscopy, is studied in order to determine guidelines of grid usage for flat detector based cone beam CT. The investigation aims at obtaining the signal to noise ratio improvement factor by the use of anti-scatter grids. First, the results of detailed Monte Carlo simulations as well as measurements are presented. From these the general characteristics of the impinging field of scattered and primary photons are derived. Phantoms modeling the head, thorax and pelvis regions have been studied for various imaging geometries with varying phantom size, cone and fan angles and patient-detector distances. Second, simulation results are shown for ideally focused and vacuum spaced grids as best case approach as well as for grids with realistic spacing materials. The grid performance is evaluated by means of the primary and scatter transmission and the signal to noise ratio improvement factor as function of imaging geometry and grid parameters. For a typical flat detector cone beam CT setup, the grid selectivity and thus the performance of anti-scatter grids is much lower compared to setups where the grid is located directly behind the irradiated object. While for small object-to-grid distances a standard grid improves the SNR, the SNR for geometries as used in flat detector based cone beam CT is deteriorated by the use of an anti-scatter grid for many application scenarios. This holds even for the pelvic region. Standard fluoroscopy anti-scatter grids were found to decrease the SNR in many application scenarios of cone beam CT due to the large patient-detector distance and have, therefore, only a limited benefit in flat detector based cone beam CT.


Medical Imaging 1998: Physics of Medical Imaging | 1998

Dynamic X-ray imaging system based on an amorphous silicon thin-film array

Norbert Jung; P. L. Alving; Falko Busse; Norbert Conrads; Henk J. Meulenbrugge; Walter Ruetten; Ulrich Schiebel; Martin Weibrecht; Herfried Karl Wieczorek

In this paper we address design concepts and performance characterization with our laboratory x-ray detector system. Key component is a 1k2 pixel TFT switched photodiode array with a pixel pitch of 200 micrometer. It is built of a-Si:H with a CsI:Tl scintillator layer. The detector system can be used for radiography and fluoroscopy applications with up to 30 images/s. It shows a S/N-ratio better than 23dB at a dose of 10nGy/frame and reaches a value for DQE of more than 60% at low spatial frequencies. We have developed a new evaporation process for CsI:Tl deposition directly on the array. It yields an x-ray sensitivity close to the theoretical limit and a spatial resolution on a sufficiently high level. An optimized plate design in combination with a dedicated charge sensitive readout amplifier chip lead to a very low level of electronic noise. In particular sources and properties of electronic noise and signal crosstalk have shown to be crucial for the clinical use of the new technology. The visual impression of the remaining noise in the images from our system is isotropic. This means especially that synchronous noise has been reduced to the edge of visibility.


Medical Imaging 2004: Physics of Medical Imaging | 2004

Soft-tissue contrast resolution within the head of human cadaver by means of flat-detector-based cone-beam CT

Jens Wiegert; Matthias Bertram; Dirk Schaefer; Norbert Conrads; Niels Noordhoek; Kees de Jong; Til Aach; Georg Rose

In this paper, soft tissue contrast visibility in neural applications is investigated for volume imaging based on flat X-ray detector cone-beam CT. Experiments have been performed on a high precision bench-top system with rotating object table and fixed X-ray tube-detector arrangement. Several scans of a post mortem human head specimen have been performed under various conditions. Hereby two different flat X-ray detectors with 366 x 298mm2 (Trixell Pixium 4700) and 176 x 176mm2 (Trixell Pixium 4800) active area have been employed. During a single rotation up to 720 projections have been acquired. For reconstruction of the 3D images a Feldkamp algorithm has been employed. Reconstructed images of the head of human cadaver demonstrate that added soft tissue contrast down to 10 HU is detectable for X-ray dose comparable to CT. However, the limited size of the smaller detector led to truncation artifacts, which were partly compensated by extrapolation of the projections outside the field of view. To reduce cupping artifacts resulting from scattered radiation and to improve visibility of low contrast details, a novel homogenization procedure based on segmentation and polynomial fitting has been developed and applied on the reconstructed voxel data. Even for narrow HU-Windows, limitations due to scatter induced cupping artifacts are no longer noticeable after applying the homogenization procedure.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Image quality of flat-panel cone beam CT

Georg Rose; Jens Wiegert; Dirk Schaefer; Klaus Fiedler; Norbert Conrads; Jan Timmer; Volker Rasche; Niels Noordhoek; Erhard Klotz; Reiner Koppe

We present results on 3D image quality in terms of spatial resolution (MTF) and low contrast detectability, obtained on a flat dynamic X-ray detector (FD) based cone-beam CT (CB-CT) setup. Experiments have been performed on a high precision bench-top system with rotating object table, fixed X-ray tube and 176 x 176 mm2 active detector area (Trixell Pixium 4800). Several objects, including CT performance-, MTF- and pelvis phantoms, have been scanned under various conditions, including a high dose setup in order to explore the 3D performance limits. Under these optimal conditions, the system is capable of resolving less than 1% (~10 HU) contrast in a water background. Within a pelvis phantom, even inserts of muscle and fat equivalent are clearly distinguishable. This also holds for fast acquisitions of up to 40 fps. Focusing on the spatial resolution, we obtain an almost isotropic three-dimensional resolution of up to 30 lp/cm at 10% modulation.


MRS Proceedings | 1998

X-Ray Sensing Properties of a Lead Oxide Photoconductor Combined With an Amorphous Silicon Tft Array

A. Brauers; Norbert Conrads; G. Frings; Ulrich Dr. Schiebel; M. J. Powell; C Glasse

We present first results on the performance of flat dynamic x-ray detectors (FDXD) based on arrays of amorphous silicon thin film transistors (TFT) with charge storage capacitances and lead oxide as x-ray photoconductor. In order to increase the “active area” of every pixel, the layout of the array has been made in a multilevel arrangement, where the charge collecting electrode is separated from the underlying electronics by a thick insulating layer. This allows for a geometrical overlap of the pixel electrodes and TFTs. PbO has been chosen as the x-ray sensing material due to its very high x-ray sensitivity. The relevant detector properties of evaporated PbO layers are described along with results obtained on first FDXD devices with PbO.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Performance of prototype modules of a novel multislice CT detector based on CMOS photosensors

Lothar Spies; Francisco Morales; Roger Steadman; Klaus Fiedler; Norbert Conrads

A novel CT detector based on CMOS photodiodes has been developed. A detector module comprises two identical photosensor arrays mounted to a ceramic substrate. Each sensor has a matrix of 20 by 10 pixels. Pixels are 1 mm (channel direction) x 1.8 mm (slice) large and consist of a photodiode, charge integration unit and a sample and hold stage. An automated switching between a low and a high sensitivity mode allows for a dynamic range of 17 bits. The integrated signals are read out, transferred to a printed circuit board (at a rate of 2463 Hz per pixel) and here converted into a digital data stream. The structured cadmium tungstate scintillator features lead stripes between pixels to reduce x-ray crosstalk and to shield the underlying in-pixel electronics. During assembling care was taken to ensure that the lead stripes of the scintillator entirely cover the pixel electronics underneath. Several prototype modules have been assembled and their performance concerning linearity, noise, crosstalk, and temperature dependence has been evaluated.


Bildverarbeitung für die Medizin | 1998

Dynamic X-Ray Imaging System based on an all-solid-state Detector

Norbert Jung; Falko Busse; Norbert Conrads; Henk J. Meulenbrugge; Walter Rütten; H. Stouten; Herfried Karl Wieczorek

New digital detector systems based on all-solid-state large area elec-tronics offer a number of advantages for the user, like no image distortions, flat and light weight housing, no veiling glare, and large dynamic range. On the other hand, they require a dedicated image preprocessing to exploit their full image quality. In this paper we address design concepts, performance charac-terization and resulting image preprocessing aspects of our experimental de-tector system. The system comprises the detector frontend and a realtime image preprocessing unit with an interface to a commercial digital video system. It is intended for clinical evaluation of this new technology.


Archive | 1997

X-ray examination apparatus with a semiconductor x-ray detector

Walter Rütten; Ulrich Schiebel; Herfried Karl Wieczorek; Norbert Conrads


Archive | 1995

Arrangement comprising a sensor matrix

Norbert Conrads; Ulrich Schiebel; Herfried Wieczorek

Researchain Logo
Decentralizing Knowledge