Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norbert Kirchgeßner is active.

Publication


Featured researches published by Norbert Kirchgeßner.


PLOS ONE | 2011

Cyclic Stress at mHz Frequencies Aligns Fibroblasts in Direction of Zero Strain

Uta Faust; Nico Hampe; Wolfgang Rubner; Norbert Kirchgeßner; S. A. Safran; Bernd Hoffmann; Rudolf Merkel

Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.


Review of Scientific Instruments | 2007

Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns

Claudia M. Cesa; Norbert Kirchgeßner; Dirk Mayer; Ulrich Schwarz; Bernd Hoffmann; Rudolf Merkel

Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.


Cytoskeleton | 2009

Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation.

Christoph Möhl; Norbert Kirchgeßner; Claudia Schäfer; Kevin Küpper; Simone Born; Gerold Diez; Wolfgang H. Goldmann; Rudolf Merkel; Bernd Hoffmann

The coordinated formation and release of focal adhesions is necessary for cell attachment and migration. According to current models, these processes are caused by temporal variations in protein composition. Protein incorporation into focal adhesions is believed to be controlled by phosphorylation. Here, we tested the exchange dynamics of GFP-vinculin as marker protein of focal adhesions using the method of Fluorescence Recovery After Photobleaching. The relevance of the phosphorylation state of the protein, the age of focal adhesions and the acting force were investigated. For stable focal adhesions of stationary keratinocytes, we determined an exchangeable vinculin fraction of 52% and a recovery halftime of 57 s. Nascent focal adhesions of moving cells contained a fraction of exchanging vinculin of 70% with a recovery halftime of 36 s. Upon maturation, mean saturation values and recovery halftimes decreased to levels of 49% and 42 s, respectively. Additionally, the fraction of stably incorporated vinculin increased with cell forces and decreased with vinculin phosphorylation within these sites. Experiments on a nonphosphorylatable vinculin mutant construct at phosphorylation site tyr1065 confirmed the direct interplay between phosphorylation and exchange dynamics of adhesion proteins during adhesion site maturation.


Cell Adhesion & Migration | 2010

The key feature for early migratory processes Dependence of adhesion, actin bundles, force generation and transmission on filopodia

Claudia Schäfer; Simone Born; Christoph Möhl; Sebastian Houben; Norbert Kirchgeßner; Rudolf Merkel; Bernd Hoffmann

Migration of cells is one of the most essential prerequisites to form higher organisms and depends on a strongly coordinated sequence of processes. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. While substrate sensing was ascribed to filopodia, all other processes were believed to depend mainly on lamellipodia of migrating cells. In this work we show for motile keratinocytes that all processes from substrate sensing to force generation strongly depend on filopodial focal complexes as well as on filopodial actin bundles. In a coordinated step by step process filopodial focal complexes have to be tightly adhered to the substrate and to filopodial actin bundles to enlarge upon lamellipodial contact forming classical focal adhesions. Lamellipodial actin filaments attached to those focal adhesions originate from filopodia. Upon cell progression, the incorporation of filopodial actin bundles into the lamellipodium goes along with a complete change in actin cross-linker composition from filopodial fascin to lamellipodial α-actinin. α-Actinin in turn is replaced by myosin II and becomes incorporated directly behind the leading edge. Myosin II activity makes this class of actin bundles with their attached FAs the major source of force generation and transmission at the cell front. Furthermore, connection of FAs to force generating actin bundles leads to their stabilization and further enlargement. Consequently, adhesion sites formed independently of filopodia are not connected to detectable actin bundles, transmit weak forces to the substrate and disassemble within a few minutes without having been increased in size.


Biochemical and Biophysical Research Communications | 2010

Tyrosine phosphorylation of vinculin at position 1065 modifies focal adhesion dynamics and cell tractions

Kevin Küpper; Nadine Lang; Christoph Möhl; Norbert Kirchgeßner; Simone Born; Wolfgang H. Goldmann; Rudolf Merkel; Bernd Hoffmann

Focal adhesions (FAs) connect the cellular actin cytoskeleton via integrin with the extracellular matrix. They comprise of many structural and signaling proteins which are highly dynamic, well regulated, and responsible for the sensing of physical properties from the environment. Vinculin is a protein that incorporates all these functions. Here, we investigated the phosphorylation of Y1065 in the activation/regulation of vinculin. We used different vinculin mutants mimicking either a permanently activated or inhibited phosphorylation site at position 1065. Using these mutants, we determined their influence on the exchange dynamics and cell forces using fluorescence recovery after photobleaching and traction microscopy. The results indicate that phosphorylation at Y1065 significantly increases the amount of freely exchanging vinculin within FAs whereas inhibition of this phosphorylation site leads to an uncontrolled exchange of vinculin and reduced adhesive cell forces. In conclusion, we show that phosphorylation on position Y1065 is essential for accurate incorporation of vinculin into FAs and mechanical behavior of cells.


European Journal of Cell Biology | 2012

Cyclic stretch induces reorientation of cells in a Src family kinase- and p130Cas-dependent manner.

Verena Niediek; Simone Born; Nico Hampe; Norbert Kirchgeßner; Rudolf Merkel; Bernd Hoffmann

Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g. around blood vessels, within the lung epithelia or around the intestine, is cyclic stretch. As a response, many cell types reorient their actin cytoskeleton and main cell axis almost perpendicular to the direction of stretch. Despite the vital necessity of cellular adaptation to cyclic stretch, the underlying mechanosensory signal cascades are far from being understood. Here we show an important function of Src-family kinase activity in cellular reorientation upon cyclic stretch. Deletion of all three family members, namely c-Src, Yes and Fyn (SYF), results in a strongly impaired cell reorientation of mouse embryonic fibroblasts with an only incomplete reorientation upon expression of c-Src. We further demonstrate that this reorientation phenotype of SYF-depleted cells is not caused by affected protein exchange dynamics within focal adhesions or altered cell force generation. Instead, Src-family kinases regulate the reorientation in a mechanotransduction-dependent manner, since knock-down and knock-out of p130Cas, a putative stretch sensor known to be phosphorylated by Src-family kinases, also reduce cellular reorientation upon cyclic stretch. This impaired reorientation is identical in intensity upon mutating stretch-sensitive tyrosines of p130Cas only. These statistically highly significant data pinpoint early events in a Src family kinase- and p130Cas-dependent mechanosensory/mechanotransduction pathway.


Journal of Physics: Condensed Matter | 2010

Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

David Kirchenbüchler; Simone Born; Norbert Kirchgeßner; Sebastian Houben; Bernd Hoffmann; Rudolf Merkel

Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile strain with a mechanical coupling between the front and rear end of a cell.


Cell Adhesion & Migration | 2011

The filopodium: A stable structure with highly regulated repetitive cycles of elongation and persistence depending on the actin cross-linker fascin

Claudia Schäfer; Uta Faust; Norbert Kirchgeßner; Rudolf Merkel; Bernd Hoffmann

The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we deomonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared to filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this re-growth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.


dagm conference on pattern recognition | 2010

Estimating force fields of living cells - comparison of several regularization schemes combined with automatic parameter choice

Sebastian Houben; Norbert Kirchgeßner; Rudolf Merkel

In this paper we evaluate several regularization schemes applied to the problem of force estimation, that is Traction Force Microscopy (TFM). This method is widely used to investigate cell adhesion and migration processes as well as cellular response to mechanical and chemical stimuli. To estimate force densities TFM requires the solution of an inverse problem, a deconvolution. Two main approaches have been established for this. The method introduced by Dembo [1] makes a finite element approach and inverts the emerging LES by means of regularization. Hence this method is very robust, but requires high computational effort. The other ansatz by Butler [2] works in Fourier space to solve the problem by direct inversion. It is therefore based on the assumption of smooth data with little noise. The combination of both, a regularization in Fourier space, has been proposed [3] but not analyzed in detail. We cover this analysis and present several methods for an objective and automatic choice of the required regularization parameters.


Biophysical Journal | 2007

Cell Force Microscopy on Elastic Layers of Finite Thickness

Rudolf Merkel; Norbert Kirchgeßner; Claudia M. Cesa; Bernd Hoffmann

Collaboration


Dive into the Norbert Kirchgeßner's collaboration.

Top Co-Authors

Avatar

Bernd Hoffmann

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Rudolf Merkel

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Simone Born

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Möhl

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Claudia M. Cesa

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Nico Hampe

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Kevin Küpper

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Uta Faust

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Wolfgang H. Goldmann

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge