Norbert Meyer
Swiss Institute of Allergy and Asthma Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norbert Meyer.
The Journal of Allergy and Clinical Immunology | 2011
Mübeccel Akdis; Simone Burgler; Thomas Eiwegger; Hiroyuki Fujita; Enrique Gomez; Sven Klunker; Norbert Meyer; Liam O’Mahony; Oscar Palomares; Claudio Rhyner; Nadia Quaked; Anna Schaffartzik; Willem van de Veen; Sabine Zeller; Maya Zimmermann; Cezmi A. Akdis
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
The Journal of Allergy and Clinical Immunology | 2010
Norbert Meyer; Maya Zimmermann; Simone Burgler; Claudio Bassin; Stefan Woehrl; Katharina Moritz; Claudio Rhyner; Philippe Indermitte; Peter Schmid-Grendelmeier; Mübeccel Akdis; Günter Menz; Cezmi A. Akdis
BACKGROUND Keratinocyte (KC) apoptosis is an important mechanism of eczema and spongiosis in patients with atopic dermatitis (AD) and is mediated by IFN-gamma, which is secreted by T(H)1 cells. IL-32 is a proinflammatory cytokine that is involved in the inflammatory processes of rheumatoid arthritis, chronic obstructive pulmonary disease, and Crohn disease. Recently, it was shown that upregulation of IL-32 induces apoptosis. OBJECTIVE The aim of the study was to investigate the expression and function of IL-32 in patients with AD. METHODS The expression of IL-32 in KCs was analyzed by means of RT-PCR, ELISA, and flow cytometry. Transfections of small interfering RNA were performed in primary KCs, and apoptosis was analyzed by means of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, annexin-V, and 7-amino actinomycin D stainings. Immunofluorescence stainings were used to detect IL-32 in skin biopsy specimens, and serum levels of IL-32 were analyzed by means of ELISA. RESULTS We report that IL-32 is expressed in human primary KCs on stimulation with IFN-gamma, TNF-alpha, and T(H)1 cells in contrast to T(H)2, regulatory T (Treg), or T(H)17 cells, which showed no effect. Transfection of primary KCs and artificial skin equivalents with small interfering RNA to IL-32, which resulted in a clear decrease in IL-32 expression, significantly reduced KC apoptosis. Immunofluorescence staining demonstrated that IL-32 was expressed in AD lesional skin, whereas it was present in neither skin biopsy specimens from healthy donors nor in lesional skin from patients with psoriasis. Serum levels of IL-32 from patients with AD correlated with disease severity, but increased serum levels of IL-32 were also detected in asthmatic patients. CONCLUSION The present study demonstrates KCs as a source of IL-32, which modulates KC apoptosis and contributes to the pathophysiology of AD.
The Journal of Allergy and Clinical Immunology | 2009
Simone Bürgler; Nadia Ouaked; Claudio Bassin; Tomasz M. Basinski; Pierre-Yves Mantel; Kerstin Siegmund; Norbert Meyer; Cezmi A. Akdis; Carsten B. Schmidt-Weber
BACKGROUND T(H)17 cells are of pathologic relevance in autoimmune disorders and presumably also in allergy and asthma. Regulatory T (Treg) cells, in contrast, suppress inflammatory and allergen-driven responses. Despite these disparate functions, both T-cell subsets have been shown to be dependent on TGF-beta for their development. OBJECTIVE The aim of the study was to analyze the differentiation and function of human T(H)17 cells in comparison with other T(H) cell subsets. METHODS Naive human CD4(+) T cells were differentiated in vitro, and gene expression was analyzed by means of quantitative real-time PCR, ELISA, and immunofluorescence. The function of T(H) cell subsets was assessed by monitoring the response of primary bronchial epithelial cells in coculture experiments. RESULTS In vitro differentiated T(H)17 cells differ from Treg and other T(H) cells in their potency to induce IL-6 and IL-1beta expression in primary bronchial epithelial cells. TGF-beta, IL-1beta, IL-6, and IL-23 are necessary during T(H)17 cell differentiation to acquire these functions, including IL-17 production. In contrast, TGF-beta alone is necessary and sufficient to induce the transcription factor RORC2. This transcription factor, previously thought to be specific for T(H)17 cells, is also expressed in Treg cells, CD25(+) cells, cytotoxic T cells, and natural killer T cells. CONCLUSION This study demonstrates mechanisms of differentiation to human T(H)17 cells, a subset that effectively and uniquely modulates the function of primary bronchial epithelial cells.
The Journal of Allergy and Clinical Immunology | 2012
Ana Rebane; Maya Zimmermann; Alar Aab; Hansjörg Baurecht; Andrea Koreck; Maire Karelson; Kristi Abram; Tauno Metsalu; Maire Pihlap; Norbert Meyer; Regina Fölster-Holst; Nikoletta Nagy; Lajos Kemény; Külli Kingo; Jaak Vilo; Thomas Illig; Mübeccel Akdis; Andre Franke; Natalija Novak; Stephan Weidinger; Cezmi A. Akdis
BACKGROUND Enhanced apoptosis of keratinocytes is the main cause of eczema and spongiosis in patients with the common inflammatory skin disease atopic dermatitis (AD). OBJECTIVE The aim of the study was to investigate molecular mechanisms of AD-related apoptosis of keratinocytes. METHODS Primary keratinocytes isolated from patients with AD and healthy donors were used to study apoptosis by using annexin V/7-aminoactinomycin D staining. Illumina mRNA Expression BeadChips, quantitative RT-PCR, and immunofluorescence were used to study gene expression. In silico analysis of candidate genes was performed on genome-wide single nucleotide polymorphism data. RESULTS We demonstrate that keratinocytes of patients with AD exhibit increased IFN-γ-induced apoptosis compared with keratinocytes from healthy subjects. Further mRNA expression analyses revealed differential expression of apoptosis-related genes in AD keratinocytes and skin and the upregulation of immune system-related genes in skin biopsy specimens of chronic AD lesions. Three apoptosis-related genes (NOD2, DUSP1, and ADM) and 8 genes overexpressed in AD skin lesions (CCDC109B, CCL5, CCL8, IFI35, LYN, RAB31, IFITM1, and IFITM2) were induced by IFN-γ in primary keratinocytes. The protein expression of IFITM1, CCL5, and CCL8 was verified in AD skin. In line with the functional studies and AD-related mRNA expression changes, in silico analysis of genome-wide single nucleotide polymorphism data revealed evidence of an association between AD and genetic markers close to or within the IFITM cluster or RAB31, DUSP1, and ADM genes. CONCLUSION Our results demonstrate increased IFN-γ responses in skin of patients with AD and suggest involvement of multiple new apoptosis- and inflammation-related factors in the development of AD.
The Journal of Allergy and Clinical Immunology | 2011
Maya Zimmermann; Andrea Koreck; Norbert Meyer; Tomasz M. Basinski; Flurina Meiler; Burgler Simone; Stefan Woehrl; Katharina Moritz; Thomas Eiwegger; Peter Schmid-Grendelmeier; Lajos Kemény; Cezmi A. Akdis
BACKGROUND Activation of skin keratinocytes followed by their apoptotic death leads to eczema and spongiosis formations in patients with atopic dermatitis (AD). TNF-like weak inducer of apoptosis (TWEAK) binds to its receptor, fibroblast growth factor-inducible 14 (Fn14), and controls many cellular activities, including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. OBJECTIVE The aim of the study was to investigate the role of TWEAK and Fn14 in the formation of eczema in patients with AD. METHODS Primary keratinocytes were isolated from nonlesional skin from patients with AD and psoriasis and from normal skin of healthy donors. Apoptosis analysis was performed by using annexin V/7-aminoactinomycin D and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. The expression and regulation of TWEAK, TNF-α, Fn14, TNF receptor (TNFR) 1, and TNFR2 were measured by means of RT-PCR, flow cytometric analysis, and ELISA. TWEAK and Fn14 expression of lesional AD and psoriatic skin and normal control skin was analyzed by using immunohistochemistry and immunofluorescence. RESULTS TWEAK and TNF-α cooperate in the induction of apoptosis in primary keratinocytes obtained from patients with AD, patients with psoriasis, and healthy subjects and in artificial skin equivalents. TNFR1 and Fn14 were the main receptors involved. TWEAK upregulates TNF-α expression in primary keratinocytes, whereas TNF-α did not affect the expression of TWEAK and its receptors. High TWEAK expression was observed in AD lesions but not in psoriatic lesions or normal skin. Fn14 was highly expressed in the lesional skin of patients with AD and patients with psoriasis and in healthy control skin. CONCLUSION The high expression of TWEAK in lesional AD skin contributes to the difference in keratinocyte apoptosis and lesional formation between AD and psoriasis.
The Journal of Allergy and Clinical Immunology | 2009
Tomasz M. Basinski; David Holzmann; Thomas Eiwegger; Maya Zimmermann; Sven Klunker; Norbert Meyer; Peter Schmid-Grendelmeier; Marek Jutel; Cezmi A. Akdis
BACKGROUND T-cell infiltration of submucosa, release of proinflammatory cytokines leading to epithelial activation, and contributions to inflammation are observed in chronic rhinosinusitis (CRS). OBJECTIVES Molecular mechanisms and kinetics of T-cell interaction with sinus epithelium leading to activation followed by subsequent apoptosis of epithelial cells were the focus of the current study. METHODS Primary human sinus epithelial cells and T cells generated from sinus tissues of healthy individuals and patients with CRS with or without allergy and sinus tissue biopsies were characterized in terms of activation (surface marker expression, cytokine production via real-time PCR, confocal microscopy, ELISA) and apoptosis (annexin V/7-amino-actinomycin D staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, receptor expression by flow cytometry, confocal microscopy) of epithelial cells. RESULTS Primary human sinus epithelial cells isolated from patients with CRS were at an activated state with upregulated expression of HLA-DR, IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and TNF-related apoptosis-inducing ligand (TRAIL) compared with healthy individuals. The expressions of these chemokines, HLA-DR, TRAIL, and TNF receptor 2 were significantly induced by IFN-gamma, whereas TRAIL receptor 4 was downregulated. Epithelial cells started to undergo apoptosis 48 hours after IFN-gamma stimulation when the transcription of proinflammatory cytokines and chemokines decreased to initial levels. The essential factors for sinus epithelial apoptosis were T(H)1 cells and IFN-gamma. Epithelial apoptosis was enhanced by Fas-Fas-ligand and TRAIL-TRAIL receptor 2 interactions. Remarkable apoptosis of epithelial cells and shedding was observed in CRS in situ. CONCLUSION Epithelial cell interaction with activated T cells is a biphasic phenomenon in CRS. Initially activated T cells lead to activation and induction of proinflammatory functions of epithelial cells, and thereafter their apoptotic death, resulting in no more contribution to inflammation, takes place.
The Journal of Allergy and Clinical Immunology | 2009
Sabine Zeller; Claudio Rhyner; Norbert Meyer; Peter Schmid-Grendelmeier; Cezmi A. Akdis
BACKGROUND Atopic eczema (AE) is the most common chronic inflammatory skin disease. Recent data demonstrate the presence of autoreactive serum IgE antibodies correlating with the severity of the disease. OBJECTIVE Although several IgE-binding self-antigens have been reported, the whole repertoire of IgE-binding self-antigens is unknown. We aimed to estimate the repertoire size of autoreactive proteins related to AE and clone, produce, and characterize humoral and T-cell responses against novel self-antigens. METHODS Phage surface-displayed human cDNA libraries were enriched for clones binding to serum IgE from patients with AE and screened by using high-throughput technology. Selected clones were used to produce the encoded proteins, to test their IgE-binding ability in Western blots and ELISAs, and their ability to induce mediator release from basophils of sensitized individuals. RESULTS One hundred forty sequences encoding potential IgE-binding self-antigens associated with AE were identified. Sixteen sequences encoded already described self-antigens. Three new sequences showed homology with environmental allergens, 86 encoded known human proteins, 7 predicted proteins, and 28 showed sequence identity with genomic contigs. Immunoblotting and ELISA experiments demonstrated the presence of IgE antibodies in sera from patients with AE to 5 selected recombinant self-antigens and their ability to induce mediator release from basophils of patients with AE who have self-antigen-specific IgE antibodies. CONCLUSION These data demonstrate a broad spectrum of at least 140 IgE-binding self-antigens associated with AE. By binding IgE antibodies or activating specific T cells, they might promote, perpetuate, or both existing skin inflammation.
Current Allergy and Asthma Reports | 2013
Norbert Meyer; Cezmi A. Akdis
Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.
The Journal of Allergy and Clinical Immunology | 2011
Hiroyuki Fujita; Maciej Chalubinski; Claudio Rhyner; Philippe Indermitte; Norbert Meyer; Ruth Ferstl; Angela Treis; Enrique Gomez; Ahmet Akkaya; Liam O’Mahony; Mübeccel Akdis; Cezmi A. Akdis
BACKGROUND Increased airway smooth muscle (ASM) mass is an essential component of airway remodeling and asthma development, and there is no medication specifically against it. Tight junction (TJ) proteins, which are expressed in endothelial and epithelial cells and affect tissue integrity, might exist in other types of cells and display additional functions in the asthmatic lung. OBJECTIVE The aim of this study was to investigate the existence, regulation, and function of TJ proteins in ASM in asthmatic patients. METHODS The expression and function of TJ proteins in primary ASM cell lines, human bronchial biopsy specimens, and a murine model of asthma were analyzed by means of RT-PCR, multispectral imaging flow cytometry, immunohistochemistry, Western blotting, 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester staining, tritiated thymidine incorporation, wound-healing assay, and luminometric bead array. RESULTS Increased claudin-1 expression was observed in ASM of asthmatic patients, as well as in a murine model of asthma-like airway inflammation. Whereas IL-1β and TNF-α upregulated claudin-1 expression, it was downregulated by the T(H)2 cytokines IL-4 and IL-13 in primary human ASM cells. Claudin-1 was localized to the nucleus and cytoplasm but not to the cell surface in ASM cells. Claudin-1 played a central role in ASM cell proliferation, as demonstrated by increased ASM cell proliferation seen with overexpression and decreased proliferation seen with small interfering RNA knockdown of claudin-1. Overexpression of claudin-1 induced vascular endothelial growth factor and downregulated IL-6, IL-8, and IFN-γ-induced protein 10 production by ASM cells. Claudin-1 upregulation by IL-1β or TNF-α was suppressed by dexamethasone but not by rapamycin, FK506, or salbutamol. CONCLUSION These results demonstrate that claudin-1 might play a role in airway remodeling in asthmatic patients by means of regulation of ASM cell proliferation, angiogenesis, and inflammation.
Chemical immunology and allergy | 2012
Hiroyuki Fujita; Norbert Meyer; Mübeccel Akdis; Cezmi A. Akdis
In allergic diseases, immune responses are induced by normally well-tolerated allergens, which result in chronic inflammation characterized by antibody secretion and T cell activation. For almost 100 years, allergen-specific immunotherapy (allergen-SIT) has been the potentially curative and antigen-specific method for the treatment of allergic diseases. Allergen-SIT alters the course of allergic diseases and can reduce allergic symptoms and medication use. The key mechanism behind allergen-SIT is the induction of peripheral T cell tolerance by altering the balance between Th cells and regulatory T cells. Both naturally occurring thymus-derived FOXP3(+)CD4(+)CD25(+) regulatory T cells and inducible type 1 regulatory T cells suppress the development of allergic diseases via several mechanisms including suppression of dendritic cells, Th cells, mast cells, eosinophils and basophils; suppression of inflammatory cell migration to tissues; and decrease of the ratio between allergen-specific IgE and IgG4 antibodies. These effects are mainly mediated by the suppressive cytokines IL-10 and TGF-β. Knowledge of this molecular basis is crucial to understanding the regulation of the immune response and their possible therapeutic applications for allergic diseases.