Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norberto Oggioni is active.

Publication


Featured researches published by Norberto Oggioni.


Experimental Neurology | 2007

Bortezomib-induced peripheral neurotoxicity: A neurophysiological and pathological study in the rat

Guido Cavaletti; Alessandra Gilardini; Annalisa Canta; Laura Maria Rigamonti; Virginia Rodriguez-Menendez; Cecilia Ceresa; Paola Marmiroli; Mario Bossi; Norberto Oggioni; Maurizio D'Incalci; Roland De Coster

Bortezomib is a new proteasome inhibitor with a high antitumor activity, but also with a potentially severe peripheral neurotoxicity. To establish a preclinical model and to characterize the changes induced on the peripheral nerves, dorsal root ganglia (DRG) and spinal cord, bortezomib was administered to Wistar rats (0.08, 0.15, 0.20, 0.30 mg/kg/day twice [2q7d] or three times [3q7d] weekly for a total of 4 weeks). At baseline, on days 14, 21 and 28 after the beginning the treatment period and during a 4-week follow-up period sensory nerve conduction velocity (SNCV) was determined in the tail of each animal. Sciatic nerve, DRG and spinal cord specimens were processed for light and electron microscope observations and morphometry. At the maximum tolerated dose bortezomib induced a significant reduction in SNCV, with a complete recovery at the end of the follow-up period. Sciatic nerve examination and morphometric determinations demonstrated mild to moderate pathological changes, involving predominantly the Schwann cells and myelin, although axonal degeneration was also observed. Bortezomib-induced changes were also observed in DRG and they were represented by satellite cell intracytoplasmatic vacuolization due to mitochondrial and endoplasmic reticulum damage, closely resembling the changes observed in sciatic nerve Schwann cells. Only rarely did the cytoplasm of DRG neurons has a dark appearance and clear vacuoles occurring in the cytoplasm. Spinal cord was morphologically normal. This model is relevant to the neuropathy induced by bortezomib in the treatment of human malignancies and it could be useful in increasing our knowledge regarding the mechanisms underlying bortezomib neurotoxicity.


Clinical Cancer Research | 2006

Protective Effect of Erythropoietin and Its Carbamylated Derivative in Experimental Cisplatin Peripheral Neurotoxicity

Roberto Bianchi; Michael Brines; Giuseppe Lauria; Costanza Savino; Alessandra Gilardini; Gabriella Nicolini; Virginia Rodriguez-Menendez; Norberto Oggioni; Annalisa Canta; Paola Penza; Raffaella Lombardi; Claudio Minoia; Anna Ronchi; Anthony Cerami; Pietro Ghezzi; Guido Cavaletti

Purpose: Antineoplastic drugs, such as cisplatin (CDDP), are severely neurotoxic, causing disabling peripheral neuropathies with clinical signs known as chemotherapy-induced peripheral neurotoxicity. Cotreatment with neuroprotective agents and CDDP has been proposed for preventing or reversing the neuropathy. Erythropoietin given systemically has a wide range of neuroprotective actions in animal models of central and peripheral nervous system damage. However, the erythropoietic action is a potential cause of side effects if erythropoietin is used for neuroprotection. We have successfully identified derivatives of erythropoietin, including carbamylated erythropoietin, which do not raise the hematocrit but retain the neuroprotective action exerted by erythropoietin. Experimental Design: We have developed previously an experimental chemotherapy-induced peripheral neurotoxicity that closely resembles CDDP neurotoxicity in humans. The present study compared the effects of erythropoietin and carbamylated erythropoietin (50 μg/kg/d thrice weekly) on CDDP (2 mg/kg/d i.p. twice weekly for 4 weeks) neurotoxicity in vivo. Results: CDDP given to Wistar rats significantly lowered their growth rate (P < 0.05), with slower sensory nerve conduction velocity (P < 0.001) and reduced intraepidermal nerve fibers density (P < 0.001 versus controls). Coadministration of CDDP and erythropoietin or carbamylated erythropoietin partially but significantly prevented the sensory nerve conduction velocity reduction. Both molecules preserved intraepidermal nerve fiber density, thus confirming their neuroprotective effect at the pathologic level. The protective effects were not associated with any difference in platinum concentration in dorsal root ganglia, sciatic nerve, or kidney specimens. Conclusions: These results widen the spectrum of possible use of erythropoietin and carbamylated erythropoietin as neuroprotectant drugs, strongly supporting their effectiveness.


European Journal of Pain | 2010

Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats

Cristina Meregalli; Annalisa Canta; Valentina Alda Carozzi; Alessia Chiorazzi; Norberto Oggioni; Alessandra Gilardini; Cecilia Ceresa; Federica Avezza; Luca Crippa; Paola Marmiroli; Guido Cavaletti

Bortezomib is a proteasome inhibitor showing strong antitumor activity against many tumors, primarily multiple myeloma. Bortezomib‐induced neuropathic pain is the main side effect and the dose‐limiting factor of the drug in clinical practice. In order to obtain a pre‐clinical model to reproduce the characteristic pain symptoms in bortezomib‐treated patients, we developed an animal model of bortezomib‐induced nociceptive sensory neuropathy. In this study, bortezomib (0.15 or 0.20mg/kg) was administered to Wistar rats three times/week for 8 weeks, followed by a 4 week follow‐up period. At the end of the treatment period a significant decrease in weight gain was observed in the treated groups vs. controls, and hematological and histopathological parameters were evaluated. After the treatment period, both doses of bortezomib induced a severe reduction in nerve conduction velocity and demonstrated a dose‐cumulative effect of the drug. The sensory behavioral assessment showed the onset of mechanical allodynia, while no effect on thermal perception was observed.


Experimental Neurology | 2010

Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies

Valentina Alda Carozzi; Annalisa Canta; Norberto Oggioni; Barbara Sala; Alessia Chiorazzi; Cristina Meregalli; Mario Bossi; Paola Marmiroli; Guido Cavaletti

Cisplatin, paclitaxel and bortezomib belong to some of the most effective families of chemotherapy drugs for solid and haematological cancers. Epothilones represent a new family of very promising antitubulin agents. The clinical use of all these drugs is limited by their severe peripheral neurotoxicity. Several in vivo rat models have reproduced the characteristics of the peripheral neurotoxicity of these drugs. However, since only a very limited number of cancer types can be studied in immunocompetent rats, these animal models do not represent an effective way to evaluate, at the same time, the antineoplastic activity and the neurotoxic effects of the anticancer compounds. In this study, we characterized the neurophysiological impairment induced by chronic chemotherapy treatment in BALB/c mice, a strain suitable for assessing the activity of anticancer treatments. At the end of a 4-week period of treatment with cisplatin, paclitaxel, epothilone-B or bortezomib, sensory and sensory/motor nerve conduction velocities (NCV) were determined in the caudal and digital nerves and dorsal root ganglia (DRG) and sciatic nerves were collected for histopathological analysis. The electrophysiological studies revealed that all the compounds caused a statistically significant reduction in the caudal NCV, while impairment of the digital NCV was less severe. This functional damage was confirmed by the histopathological observations evidencing axonal degeneration in the sciatic nerve induced by all the drugs associated with pathological changes in DRG induced only by cisplatin and bortezomib. These results confirm the possibility to use our models to combine the study of the antineoplastic activity of anticancer drugs and of their toxic effects on the peripheral nervous system in the BALB/c mouse strain.


Toxicology Letters | 2000

Effect on the peripheral nervous system of systemically administered dimethylsulfoxide in the rat: a neurophysiological and pathological study

Guido Cavaletti; Norberto Oggioni; F Sala; G Pezzoni; E Cavalletti; Paola Marmiroli; Petruccioli Mg; Lodovico Frattola; Giovanni Tredici

The issue of dimethylsulfoxide (DMSO) neurotoxicity is an important one, given its wide use in experimental toxicology as a solvent for hydrophobic substances. We examined the effect of the intraperitoneal administration of different DMSO solutions (1.8-7. 2%) on the peripheral nervous system of Wistar rats treated for 10 consecutive days and followed-up for an additional 45 days. DMSO administration induced a dose-dependent reduction in nerve conduction velocity, with complete recovery occurring in the follow-up. No structural changes were found in the sciatic nerve at 1.8% and 3.6% DMSO concentrations, suggesting that the mechanism of action of DMSO involves a functional impairment (i.e. conduction block) similar to that already described for this substance in isolated systems. However, when DMSO was administered at the 7.2% concentration, evident structural changes were observed in the sciatic nerve, with myelin disruption and uncompacted myelin lamelle. The neurophysiological and pathological changes observed in our study are severe enough to merit careful consideration in the course of experimental studies involving DMSO as a solvent for drugs which are under evaluation for their potential neurotoxicity.


PLOS ONE | 2013

Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse

Valentina Alda Carozzi; Cynthia L. Renn; Michela Bardini; Grazia Fazio; Alessia Chiorazzi; Cristina Meregalli; Norberto Oggioni; Kathleen Shanks; Marina Quartu; Maria Pina Serra; Barbara Sala; Guido Cavaletti; Susan G. Dorsey

Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.


Neuroscience Letters | 2002

Cisplatin-induced peripheral neurotoxicity in rats reduces the circulating levels of nerve growth factor

Guido Cavaletti; G Pezzoni; Claudio Pisano; Norberto Oggioni; Sala F; C Zoia; Carlo Ferrarese; Paola Marmiroli; Giovanni Tredici

The pathogenesis of the neurotoxicity of most antineoplastic drugs is unknown. Recent reports suggest that changes in the circulating levels of nerve growth factor (NGF) might be related to the dorsal root ganglia sensory neuron damage induced by cisplatin (CDDP), the first member of a family of widely used and very effective platinum-derived anticancer agents. Using a well-characterized model of CDDP neurotoxicity, we demonstrated that the NGF circulating level decreased during chronic CDDP administration in close accordance with the clinical course and returned to normal levels after recovery from the neurotoxic damage. Moreover, these changes were restricted to NGF and did not involve other trophic factors of the same neurotrophin family. Our findings are in agreement with previous in vitro and in vivo results and further suggest that NGF plays a specific role in the course of CDDP-induced primary sensory neuron damage.


Journal of Anatomy | 2008

Expression and distribution of 'high affinity' glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system.

Valentina Alda Carozzi; Annalisa Canta; Norberto Oggioni; Cecilia Ceresa; Paola Marmiroli; Jan Konvalinka; C Zoia; Mario Bossi; Carlo Ferrarese; Giovanni Tredici; Guido Cavaletti

l‐Glutamate is one of the major excitatory neurotransmitters in the mammalian central nervous system, but recently it has been shown to have a role also in the transduction of sensory input at the periphery, and in particular in the nociceptive pathway. An excess of glutamate is implicated in cases of peripheral neuropathies as well. Conventional therapeutic approaches for treating these diseases have focused on blocking glutamate receptors with small molecules or on reducing its synthesis of the receptors through the inhibition of glutamate carboxypeptidase II (GCPII), the enzyme that generates glutamate. In vivo studies have demonstrated that the pharmacological inhibition of GCPII can either prevent or treat the peripheral nerve changes in both BB/Wor and chemically induced diabetes in rats. In this study, we characterized the expression and distribution of glutamate transporters GLT1, GLAST, EAAC1 and of the enzyme GCPII in the peripheral nervous system of female Wistar rats. Immunoblotting results demonstrated that all glutamate transporters and GCPII are present in dorsal root ganglia (DRG) and the sciatic nerve. Immunofluorescence localization studies revealed that both DRG and sciatic nerves were immunopositive for all glutamate transporters and for GCPII. In DRG, satellite cells were positive for GLT1 and GCPII, whereas sensory neurons were positive for EAAC1. GLAST was localized in both neurons and satellite cells. In the sciatic nerve, GLT1 and GCPII were expressed in the cytoplasm of Schwann cells, whereas GLAST and EAAC1 stained the myelin layer. Our results give for the first time a complete characterization of the glutamate transporter system in the peripheral nervous system. Therefore, they are important both for understanding glutamatergic signalling in the PNS and for establishing new strategies to treat peripheral neuropathies.


Neurobiology of Disease | 2009

Experimental epothilone B neurotoxicity: results of in vitro and in vivo studies.

Alessia Chiorazzi; Gabriella Nicolini; Annalisa Canta; Norberto Oggioni; Roberta Rigolio; Giacomo Cossa; Raffaella Lombardi; Ilaria Roglio; Ilaria Cervellini; Giuseppe Lauria; Roberto Cosimo Melcangi; Roberto Bianchi; Donatella Crippa; Guido Cavaletti

Epothilones are a novel class of microtubule-targeting anticancer agents that are neurotoxic. In this study, we investigated the epothilone B toxic effect in vitro and we characterized in vivo the general and neurological side effects of epothilone B administration in Wistar and Fischer rats. The in vitro experiments made it possible to explore a wide concentration range (0.1 nM-1 muM) and evidenced a dose-dependent effect of epothilone B exposure on neuron neurite elongation. This dose-dependent neurotoxic effect was confirmed in both in vivo studies performed on two different rat strains at the neurophysiological, behavioral and pathological levels in the dose range 0.25-1.5 mg/kg iv weekly x 4 weeks and tubulin hyper-polymerization was demonstrated in sciatic nerve specimens. These are the first studies of the neurological effects of epothilone B and they can provide a basis for extending pre-clinical investigation to other members of the epothilone family.


Journal of Pharmacology and Experimental Therapeutics | 2012

Beneficial Effects of PKF275-055, a Novel, Selective, Orally Bioavailable, Long-Acting Dipeptidyl Peptidase IV Inhibitor in Streptozotocin-Induced Diabetic Peripheral Neuropathy

Roberto Bianchi; Ilaria Cervellini; Carla Porretta-Serapiglia; Norberto Oggioni; Byan Burkey; Pietro Ghezzi; Guido Cavaletti; Giuseppe Lauria

1-[(2-adamantyl)amino]acetyl-2-cyano-(S)-pyrrolidine, monohydrochloride (PKF275–055), a vildagliptin analog, is a novel, selective, potent, orally bioavailable, and long-acting dipeptidyl peptidase IV inhibitor. We studied the effect of PKF275-055 administration on the prevention, protection, and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. PKF275-055 improved body and muscle weight. Oral glucose tolerance tests showed a marked improvement in glucose metabolism under all treatment schedules. When tested in prevention and protection experiments, PKF275-055 completely averted the decrease of Na+/K+-ATPase activity and partially counteracted the nerve conduction velocity (NCV) deficit observed in untreated diabetic rats but had no effects on abnormal mechanical and thermal sensitivity. When used in a therapeutic setting, PKF275-055 induced a significant correction in the alteration in Na+,K+-ATPase activity and NCV present in untreated diabetics. Diabetic rats developed mechanical hyperalgesia within 2 weeks after streptozotocin injection and exhibited significantly longer thermal response latencies. It is noteworthy that PKF275-055 treatment restored mechanical sensitivity thresholds by approximately 50% (p < 0.01) and progressively improved the alteration in thermal responsiveness. In conclusion, PKF275-055 showed an anabolic effect, improved oral glucose tolerance, and counteracted the alterations in Na+,K+-ATPase activity, NCV, and nociceptive thresholds in diabetic rats. The present data support a potential therapeutic effect of PKF275-055 in the treatment of rodent diabetic neuropathy.

Collaboration


Dive into the Norberto Oggioni's collaboration.

Top Co-Authors

Avatar

Guido Cavaletti

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Chiorazzi

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Marmiroli

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Bianchi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Giovanni Tredici

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Lauria

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge